Chapter 11: Summary and conclusions.

11.1 In search of evidence.

Not all data is gathered with the intention of identifying evidence about hypotheses
(for instance), but much data is and any form of analysis that cannot extract evidence
from data is of limited use. Although some of the statements made by Neyman and
Pearson suggest that their techniques were not intended to identify evidence, others'
suggest the opposite, and it is clear that their methodology is widely believed to be of
value in this respect, nor is this belief confined to those with limited statistical

knowledge.

Fisher’s approach was intended to answer evidential questions and he criticised
Neyman and Pearson on the grounds that their methodology could not encompass this
aim. Two principles — each originating from the theories of Fisher — have come to be
associated with the search for evidence within a frequentist framework. The first is
the sufficiency principle and the second, some form of conditional principle. Both
have traditionally been interpreted with respect to conventionally large parameter
spaces. Each, in its way, attempts to remove from analytical influence elements of the
total design that seem to be irrelevant to the evidential question at issue, and both
have been incorporated into some versions of frequentist theory over the course of

time.

11.2 Problems with using conventional unconditional

frequentist inference to find evidence.

In order to be evidentially applicable, a statistical technique should, at the least, be
able to give a sensible answer to the question: What data is strong evidence against

hypothesis H relative to hypothesis K? Yet, even when H and K are simple

! Pearson (1955) quoted in Lehmann (1993), p. 1244.
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hypotheses, this question creates difficulties for conventional frequentist inference.
The usual answer — data with a small p-value — is unsatisfactory on a number of

grounds, including the following.

Problem (i):

Data that is clearly much more consistent with H than K may have a small p-value.

Problem (ii):

The same data may be interpretable (according to the p-value criterion) as both
‘strong evidence against H relative to K’ and “strong evidence against K relative to
H1.2

Problem (iii):
Data with a small p-value may be nearly equally consistent with H and K (this is

particularly noticeable when the null and alternative distributions are very similar).

Problem (iv):
The p-value is very insensitive to the exact formulation of K — an unsatisfactory

feature for any measure of relative evidence.

11.3 Improving frequentist inference by conditioning.

The conditional methods of Fisher and Cox (who allied it with the work of Neyman
and Pearson) seem to suggest a way in which frequentist inferences can be improved,
since removing parts of the sample space that have been identified as irrelevant to the
question at issue may improve the quality of the inference. However, these methods,
although they can produce results that are dramatically different from the
unconditional, do not bring us any closer to avoiding the problems described above,

nor do they mitigate the scale of these problems to even the slightest degree.

2 Problems i. and ii. are closely related to each other but describing them in this way makes the
evidential unreasonableness more apparent.
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Evidently, a small conventional p-value is not a sufficient reason to reject H (in favour
of K) since it does not guarantee a small likelihood ratio, but this is also true of the
conditional p-values produced by Cox or Fisher’s methods. For example, in Cox’s
two-stage example using two Normal populations, the conditional test is simply the
conventional (i.e. unconditional) test that would have been applied had there been
only the one (observed) population; it is therefore subject to the full force of the

problems cited above.

In contrast, the more robust conditional principle, used by Birnbaum, combines with
the SP to give the LP; this is satisfied by techniques® (such as that of Royall) that are

completely free of these problems, however these techniques are not frequentist.

There is a huge gap between the effect of Cox’s conditionality principle and
Birnbaum’s. We were intrigued by this disparity and wondered whether there was
any way in which conditioning could be used, within the confines of frequentism and
without breaching the SP, to remove or mitigate some of the more outstanding
problems. The fact that many statisticians are deeply wedded to the frequentist

approach was a major consideration is pursuing this question.

It can be argued that, in an evidential context, we ought not to test composite
hypotheses since the different elements of the composite (i.e. component simple
hypotheses) are likely to return varying measures of relative evidence for any given
data, and it follows that no measure of evidence is valid over the whole composite.
This motivated us to consider testing simple hypotheses only, that is, using binary
parameter spaces. Exhaustive conditional inference (ECI) uses Cox’s conditional
principle (which we have called ‘restricted’), exactly, but applies it to statistics that
are ancillary on binary parameter spaces instead of the traditional large parameter
spaces; this makes a critical difference because we have been able to identify optimal
versions of such ancillary statistics for a wide range of cases. Even though this
approach is unequivocally frequentist, problems (i) and (ii) never occur, and the
extent of problems (iii) and (iv) is generally reduced, and, in some cases, completely

overcome.

% Most Bayesian inferences also satisfy the LP but it is not necessary to use priors in order to achieve
this.
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In addition to the direct argument (above) for using simple hypotheses, it seems that
using binary parameter spaces is a more effective way of extending conditioning,
within the frequentist framework, than allowing the use of statistics that are
approximately ancillary on the large parameter space. We have access to an
exhaustive ancillary statistic’, which defines a strong form of optimality, and the
method is more straightforward because we do not need to specify how close to
ancillary a statistic must be before we condition upon it — a question that raises many
other questions. The ‘which ancillary statistic’ dilemma is exacerbated by allowing
approximate ancillaries to stand in competition with non-optimal exact ancillaries,

whereas the fact that ECI is optimal solves this problem.

11.4 Properties of exhaustive conditional inference.

ECI mitigates or solves problems (i)-(iv).

ECI solves problems (i) and (ii) in all cases, as follows. Since the critical likelihood

ratio of any test defined by a small conditional significance level is less than one, the
rejection region for y = % is always of the form (0,r,] where r, <1. Hence we

cannot observe any data that is both in the rejection region and much more consistent

with H than K.® Since we reject K (as null) in favour of H only when y e [r,,)
where r, >1, it follows that no data can result in both the rejection of H in favour of K

and the rejection of K in favour of H.

Exhaustive conditional inferences can suffer from problem (iii), for instance, in the

Exponential case with n=1 and g =1.01. In that case the distributions of Y under H
and K are very similar for y <1, and data with a non-significant likelihood ratio of 1

has a cp-value of 1%, indicating significance. This is unsatisfactory but an

improvement on the conventional result, since the p-value is even lower. On the other

* This is restricted to cases where Y is a continuous variable and a few ad hoc extra cases.

% At least, up to the point where we have two competing exhaustive ancillary statistics, and we have yet
to identify such a case when Y is continuous.

® Thus ECI renders redundant Kendall and Stuart’s ad hoc modification to conventional inference,
which was designed to solve problem (i). See Kendall & Stuart, pp. 182, 183.
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hand, in the cases q =+ and q =%, where no data has a small likelihood ratio, ECI

produces cp-values that are not significant, for any data, unlike the p-values. Thus,
when q=1.01, problem (iii) is mitigated by ECI and when q =% or 2, it s solved.

There is some evidence that, in any particular case, using a sufficiently large sample
will solve this problem; this is certainly true in the Exponential case and may be true
more generally. If so, it contrasts with conventional inference, where increasing n

ultimately exacerbates the problem (see Figure 10.18).

With respect to problem (iv), we note that ECI is usually very sensitive to the exact
formulation of the alternative hypothesis, K. Consider right-sided Normal location

tests of the form H: uz = g versus K: u = i, where w, can be any value greater than
4, . The cp-value of any fixed observation, x, varies with x, (and thus the cut-off
value for any « -level test also varies x, ), whereas the conventional p-value of x is
constant over all z, > . The following diagram shows the cp-values and p-values
of the observations x=1.5 and x=2.5 for testing g4 =0 versus 0 < x, <3 where

o=1.

Figure 11.1

cp and p-values of x=1.5 and x=2.5 for Normal location
tests of H:mu=0 versus K:mu=mu2>0 (sigma=1).
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We have derived some general results about the pairing functions of DDF statistics
and from them can deduce some of the general properties of ECI. However, there is
much that we do not know about pairing functions and our knowledge of the general

properties of ECI is similarly limited. Over and above the properties discussed above,
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we are left with conjectures and some general impressions of ECI based on our
observations of the examples given in Chapter 10. Since these particular examples

may be influential, we should say something about how they were selected.

The models we considered are those most commonly discussed and used for
conventional inference. Our choice of hypotheses was based on simplicity and, where
possible, we looked for cases where an explicit form could be calculated for the

pairing function, as in the Exponential model with q=1%,Z,2 and 2. We spent some

time looking for cases where the ECI breaks down (and found them in some scenarios
with hypotheses extremely close together) — this was the only type of result that we
sought out. When it came to choosing data, we always included observations where
the conventional inference gives poor results, in order to ascertain whether or not ECI
would improve matters. The Gradient model was developed out of a desire to find a
model that would reproduce some of the useful features of Welch’s Uniform model
(simplicity, intuitiveness, and the ability to illustrate issues to do with universal
ancillarity), with an explicit pairing function (giving the general form of the ECI), but
without the complication of a discrete likelihood ratio statistic leading to breaches of

the sufficiency principle.

Other desirable properties of ECI.

The DDF statistics on which ECI is based are exhaustive, meaning that the subset of
the sample space that remains after conditioning is as small (in terms of the number of
distinct y -values) as an ancillary set can ever be. It follows from this that no more
conditioning can be done without the loss of ancillarity. Let D be the DDF statistic
and A any other statistic ancillary on the binary parameter space. When we condition
on both these statistics, we are conditioning on Ax D, then either Ax D is equivalent

to D alone, or Ax D is not ancillary.

It follows from this that the DDF statistic is always a maximal ancillary statistic.

ECI satisfies the sufficiency principle for the given binary parameter space since the

DDF statistic is a function of the likelihood ratio statistic, which is minimal sufficient.
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(Recall that conditioning on a statistic that is ancillary on a large parameter space
often breaches the SP with respect to a given BPS and thereby introduces an arbitrary

element into the inference.)

A small Type | error probability, of the traditional kind, is frequently guaranteed by
an ECI test. This is always the case when the resulting critical likelihood ratio is
small, by Robbins’ result (see 87.3: Robbins’ result), and often even when it is not.

Thus the Exponential scenario with n=1 and q=1.01 and conditional significance
level of approximately 1% does not have a small CLR since CLR = 1, nevertheless

the unconditional significance level is almost zero. A small Type | error probability is
a desirable before-experiment design characteristic of a test although we do not
believe that it should be the basis of an after-experiment evidential inference. In none
of the cases that we have examined has the ECI produced a large Type | error
probability or even a Type | probability that is greater than the (appropriately small)
conditional significance level, however we have not proved that this can never

happen.

Continuity.

A point of inferential discontinuity occurs when two scenarios (including data) are
arbitrarily similar but result in inferences that are not arbitrarily close. Optimal
unconditional inferences are continuous because, as one scenario (or series of
scenarios) tends to a limiting case, so do all the components of the inference — such as
the p-value — and thus the inferences converge. However, when we condition on
exact ancillary statistics, a situation can arise where a particular statistic is exactly
ancillary in the limit but not elsewhere (or vice versa) so that the limiting inference is
conditional and substantially different from the limit of the other, unconditional,
inferences. Allowing an inference to be made conditional upon a statistic that is
approximately ancillary (weakly dependent on &) can seem like a solution to this
problem, but it only moves the point of discontinuity, it does not remove it. Savage
(1970) pointed out that the requirement that an ancillary statistic be a function of the

MSS contributes to the problem yet ignoring this requirement causes breaches of the
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sufficiency principle or takes one out of frequentism. Conventional conditional

inference causes many such discontinuities.

If we use conditional inference in some cases, but not in others (because no ancillary
statistic exists’), such discontinuities will inevitably occur. How should we create a
general method that incorporates ECI? We could use ECI whenever the DDF statistic
in ancillary (essentially when Y is continuous and in some other ad hoc cases) and
use either unconditional or a combination of unconditional and conventional
conditional methods otherwise. In this case our overall approach will contain many
discontinuities, although there will be none within the class of cases to which ECI is

applicable.

Within the ECI class of scenarios, there is continuity. This follows from the fact that
the ancillary statistics on which ECI is based all have the same basic structure — they
are the difference of the distribution functions of the likelihood ratio statistic; thus,
whenever a series of such scenarios converges to a limiting case also of this form,
their DDF statistics must converge to the limiting DDF statistic; since their DDF
statistics are all exactly ancillary, they are all conditioned upon with the result that the
inferences converge. Traditional conditioning has been based on the use of ancillary
statistics that have no particular structure in common (other than ancillarity) and are
fairly rare; there is, therefore, no continuity claim that can be made about the class of

scenarios subject to this type of conditioning.

Since we have shown that unconditional and conventional conditional methods do not
(generally) produce realistic evidential measures, we might prefer to limit ourselves to
using ECI where this is possible and leave other cases unaddressed. This approach
creates a coherent whole but at the cost of leaving many standard scenarios outside
the scope of the method. (If the sample is very large, it may be the case that the
distribution of Y is very well approximated by a continuous distribution — even

though actually discrete — and we might choose to use ECI as an approximation.

" There are many cases where no ancillary statistic exists. To create an example of such a case, simply
define a variable on a very limited discrete support (e.g. {XL Xy X3, X4}) and define two distinct and

valid probability distributions on the support such that no X -value, or combination of X -values, short
of the entire set, has the same total probability under both distributions.
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However, care must be taken in identifying appropriate approximating distributions;
traditional approximations, such as the Normal approximation to the Binomial, have

been used because they approximate tail-areas well, rather than densities, and they

R ()

roo) only poorly.)

approximate the likelihood ratio (y =

There is a third possibility, namely that we could use likelihood methods when the
DDF is not ancillary. However, | take it that anyone prepared to do this is not very

attached to frequentism and might as well use likelihood methods across the board.

Closer to a ‘likelihood’ interpretation.

Whether or not one regards closer agreement with likelihood methods as a point in
favour of ECI depends on one’s attitude to the former. However, it is interesting to
note that a greater level of congruence between frequentism and the likelihood
method of Royall, for instance, can be achieved by conditioning exhaustively. ECI is
not consistent with the likelihood principle since it does not produce a universal
relationship between the LR and the cp-value (there is more than one inference class),
yet it produces inference classes of substantially greater size than those produced by
other frequentist methods and the universal upper bound (one) on the value of the
critical likelihood ratio (for any « <100%) ensures that there is a limit to how much
the cp-value and likelihood ratio can conflict. In many cases, most obviously those in
the log-symmetric category, ECI provides a frequentist justification for a test

procedure that is perfectly consistent with a likelihood outlook.

Different stopping rules will usually produce different p-values for the same data,
even when the likelihood ratio of the data is the same. If we adhere to the LP, this
ensures that data produced by two different stopping rules, but with the same
likelihood ratio, is interpreted the same way. ECI only has this effect if both stopping
rules produce the same pairing function, as sometimes happens. However, even when

this is not the case, if both stopping rules produce cp-functions (cp, and cp,) that are

increasing in y, then the general results cp(y) <y and Iirq cp(y) =+ ensure that
y—.

lcp,(y) —cp, (y) [< min(y,3), vy e (0,1).
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While, if both stopping rules produce cp-functions that are decreasing in y, then y

must be bounded below by some value < y'<1 and

lep(y)—cp, (V) IS y'—%, Vyely'D).
In all cases, |cp,(y)—cp,(y)|=0, Yy >1, since any cp-value of a likelihood ratio

greater than one is 100%.

It is also the case that p(y) <y, and this places a non-trivial bound on the difference
between two conventional p-values when y <1, however, the fact that a value of
y >1 may produce a small p-value means that there is no non-trivial upper bound on

the absolute difference between the p-values produced by two different stopping rules

when y>1.

Practicality.

Although tedious to perform on an ad hoc basis, exhaustive conditional inference,
including test and interval results, could easily be incorporated into statistical software
packages. In addition, it is particularly simple to perform complete ECI — covering
cp-value, significance level, power and interval estimates — on the log-symmetric
class of scenarios where all these measures are simple functions of the likelihood ratio
of the data, and the functions are the same for every scenario within the class (in
contrast to unconditional inference, even in the Normal case). Were it to be shown
that the log-symmetric class covers a great number of scenarios asymptotically, then
(subject to some knowledge of convergence rates) this analytic simplicity would

extend to a wide range of cases.

11.5 Conjectures and unanswered questions.

Asymptotic convergence of ECI.

There is a possibility that the cp-values for a wide range of scenarios may converge as
n — oo, creating a large asymptotic E. C. inference class. Such a class can only
include the Normal location scenario if the limiting inference is that which applies to

the log-symmetric cases, i.e. cp(y) =5y (¥ <1) and in Chapter 10 we showed that
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this was at least a possibility. The implications of this would be considerable since it
would mean that, when n is large, ECI — which is a purely frequentist method — gives
something very close to a likelihood interpretation of the data. This follows from the
fact that the consistent relationship between the likelihood ratio (y) and the cp-value
is such that values of the likelihood ratio usually regarded as significant evidence
against H relative to K correspond to cp-values that are similarly interpreted (see §8.7:

The cp-value and the likelihood ratio).

Is the DDF statistic uniquely exhaustive?

We have not shown that the DDF statistic is the only exhaustive ancillary statistic that
can be defined for these scenarios. We have limited this discussion to cases where the
likelihood ratio statistic, Y , is continuous, because this is a sufficient condition for
identifying an exhaustive ancillary statistic — the DDF statistic. In cases where Y isa
discrete variable, there will usually be no exhaustive ancillary statistic, but it is
possible to find examples where there are two non-equivalent exhaustive ancillary
statistics. We have not identified any exhaustive statistics, other than the DDF
statistic, for continuous Y , but this does not prove that such cases do not exist. Any
exhaustive ancillary statistic can be defined by a pairing function; the pairing function
of the DDF statistic is decreasing in y when y <1. If we could show that, for
continuous Y, all exhaustive ancillary statistics have pairing functions that are
decreasing in y when y <1, then it would follow, from an inversion of the proof of
ancillarity in Chapter 9 (89.2: Proof), that the DDF statistic is uniquely exhaustive.
The log-symmetric models (Chapter 8) and the Gradient model (Chapter 10) have
symmetry properties that allowed us to identify exhaustive ancillary statistics directly

(JInY | and | X | respectively); each of these ancillary statistics is ‘equivalent’ to the

corresponding DDF statistic.

Is it ever the case that the cp-value is significantly small but the p-

value is not?

We have come across no instances of cases where the cp-value indicates significant

evidence against H, relative to K, but the conventional p-value does not. This
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certainly cannot happen in any of the log-symmetric cases where we have shown that
the p-value is always less than the cp-value. (And, this may be true more generally if
the asymptotic conjecture is true.) In both the Gradient and Exponential models, there
are some cases where the cp-value is less than the p-value but, in all those cases, both
values are greater than 50% so significance is not an issue. If it could be shown that

the function cp(y) on (0,1) is always either, (a) monotonic increasing, (b) monotonic

decreasing, or (c) constant®, this would be sufficient to show that there are no cases

where the cp-value, but not the p-value, is significant, as follows.

Recall that cp(y) —» 50% as y —1. Thus, for (b), the result is trivial since

(b) = cp(y) =50% (Vy <1) and hence p(y)>cp(y)= p(y)>50% and not
significant. Under assumptions (a) and (c), it is possible to show that p(y) <cp(y)
by using the same approach as the proof of this result in the log-symmetric case
(88.11) and the fact that, for all DDF statistics and y, <1,

D;*(a), a< D(y,)
non-existent, elsewhere.

Yo (a) = {

11.6 Two fundamental criticisms of ECI.

ECI allows one to condition to the maximum degree possible while still remaining
frequentist. Since any conditional principle is closely connected to the likelihood
principle — logically, if not psychologically® — it follows that conditional inference is
partly motivated by elements associated with that principle, as well as with traditional
frequentism. The most fundamental criticisms that can be made of ECI are those that
are implicit in the pure form of either of the two intellectual traditions underlying

conditional inference.

8 We have no counter-examples to this claim.

® Those who are attached to a conditional principle do not necessarily have any sympathy for the LP, to
which they may even be deeply opposed, yet all versions of the CP are entailed by the LP and seem to
share the same ‘relevance’ motivation.
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In the section on continuity, we noted that depending on how we incorporate ECI into
frequentism, we either produce a method with many points of inferential discontinuity
or a method that is less widely applicable than alternative methods. Each of the

following approaches, at odds with ECI, solves both these problems.

Unconditional inference.

In the earlier chapters of this work, we were at pains to explain and defend the
position sometimes called “‘the two machines argument’, which maintains that a
conditional inference is superior for assessing evidence or showing ‘what the data
tells us” about a particular question. At the heart of this argument is the perceived
irrelevance of outcomes within unobserved ancillary subsets of the sample space,
which can be equated to machines that were not used in the experiment or
unperformed sub-experiments. Despite what we regard as the compelling nature of
this argument, it is not universally accepted. Welch, for example, dismissed the
Fisherian version of the argument on the basis that the overall (average) power of a
test (rather than the conditional power) was the ‘real” power, and there is no question
that the overall power of a conditional test procedure is lower than that of the optimal
unconditional test with the same overall significance level. If, on this or any other
grounds, one does not accept the desirability of conditioning, even when the aim of
the exercise is to find evidence, then the ECI project has no appeal. This is a
fundamental criticism since acceptance of the two machines argument is a primary
motivation for pursuing any conditional approach. To support unconditional
inference, it is necessary to justify overlooking the anomalies that it produces (such as
(i)-(iv) in 811.2), either on the basis that they are not really anomalies (by disputing
our implicit interpretation of ‘evidence’, for instance), or on the basis that they are a

price worth paying for the advantages of unconditional inference.

ECI does not go far enough.

In response to the two machines argument, we have identified certain ancillary
statistics with a view to conditioning upon them. In order to retain both the
sufficiency principle and the general frequentist framework, we have defined

‘ancillary’ in a way that is more restricted than Birnbaum’s version. With this
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restriction in place, exhaustive conditional inference is as far as we can go towards
homing in on the most relevant part of the sample space, but does it go far enough?
According to the likelihood principle the only relevant element of the sample space is

the data or likelihood ratio actually observed (y,) and no other observation should

influence the analysis.® On this view, the entire frequentist project is completely

wrong-headed.

Fisher’s proposed remedy [to the problem created by different data containing
different levels of reliability] was not to question the orthodox reasoning which
caused this anomaly, but to invent still another ad hockery to patch it up: use

sampling distributions conditional on some ‘ancillary’ statistic z(x,,...,x,) that

gives some information about the data configuration that is not contained in the

estimator™®.

Since the two machines argument justifies the unrestricted conditional principle, one
can argue that it should move us to abandon frequentism in favour of the likelihood
principle. We then satisfy both the unrestricted CP and the SP, and an approach, such
as that of Royall, is free of all the problems that we have highlighted ((i)-(iv)),
simplifies the methodology by the direct use of likelihood ratios, and is inferentially

continuous and generally applicable.

11.7 Likelihood-like frequentism.

This work evolved from frequentist traditions and, therefore, rules out the use of prior
probabilities on hypotheses. Given this constraint, there are three major options
available: (i) a reasonably pure version of Neyman-Pearson methodology, (ii) a purely
Likelihoodist method, or (iii) some kind of foot-in-each-camp approach. Any
approach of the third kind is likely to be motivated by a preference for conditional

inferences over unconditional, and this, in turn, implies an interest in evidence. ECI

YInEcl, z(y,) influences the result.
1 Jaynes (2003), p. 253.
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satisfies these requirements best (within a frequentist framework), since it involves
stronger conditioning than any other frequentist approach and, although it requires the
use of binary parameter spaces, there are good independent reasons for doing this if
you want to evaluate evidence. What light does the development of ECI cast on the

pure theories?

On the one hand, ECI tends to confirm the view that the conventional error
probabilities (and p-value) of a test do not measure anything useful, at least, from the
point of view of someone primarily interested in evidence. The conventional
significance level of any test of simple hypotheses is revealed as the (before
experiment) expectation of the significance level, over an infinite number of notional
sub-experiments, of varying quality, only one of which is actually performed to

produce the data.'?

On the other hand, ECI provides a frequentist justification for the type of results
produced by non-frequentist methods such as that of Royall. The development of ECI
shows that an inference method does not necessarily give results that are substantially
different from likelihood results simply by virtue of being frequentist. We have seen
many cases where ECI interprets the data in a way that is either very similar to or
(allowing for the different measures used) equivalent to the interpretation based
directly on the likelihood ratio value, while both are substantially different from the
unconditional reading of the data, and this seems to be the case (on both counts)
whenever the sample size is sufficiently large. It is thus no longer simply a matter of
choosing between frequentist and likelihood interpretations, even as a first step; a
much greater incongruity lies between the results obtained by conventional
frequentism (including the limited forms of conditioning available to date) and

exhaustive frequentism than between the latter and likelihoodism.

12 Where the choice of sub-experiment is independent of hypothesis.
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