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Chapter 11: Summary and conclusions. 

11.1 In search of evidence.   

 

Not all data is gathered with the intention of identifying evidence about hypotheses 

(for instance), but much data is and any form of analysis that cannot extract evidence 

from data is of limited use.  Although some of the statements made by Neyman and 

Pearson suggest that their techniques were not intended to identify evidence, others1 

suggest the opposite, and it is clear that their methodology is widely believed to be of 

value in this respect, nor is this belief confined to those with limited statistical 

knowledge. 

 

Fisher’s approach was intended to answer evidential questions and he criticised 

Neyman and Pearson on the grounds that their methodology could not encompass this 

aim.  Two principles – each originating from the theories of Fisher – have come to be 

associated with the search for evidence within a frequentist framework.  The first is 

the sufficiency principle and the second, some form of conditional principle.  Both 

have traditionally been interpreted with respect to conventionally large parameter 

spaces.  Each, in its way, attempts to remove from analytical influence elements of the 

total design that seem to be irrelevant to the evidential question at issue, and both 

have been incorporated into some versions of frequentist theory over the course of 

time. 

 

 

11.2 Problems with using conventional unconditional 

frequentist inference to find evidence. 

 

In order to be evidentially applicable, a statistical technique should, at the least, be 

able to give a sensible answer to the question: What data is strong evidence against 

hypothesis H relative to hypothesis K?  Yet, even when H and K are simple 

                                                 
1 Pearson (1955) quoted in Lehmann (1993), p. 1244. 
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hypotheses, this question creates difficulties for conventional frequentist inference. 

The usual answer – data with a small p-value – is unsatisfactory on a number of 

grounds, including the following.  

 

Problem (i):  

Data that is clearly much more consistent with H than K may have a small p-value. 

 

Problem (ii): 

The same data may be interpretable (according to the p-value criterion) as both 

‘strong evidence against H relative to K’ and ‘strong evidence against K relative to 

H’.2 

 

Problem (iii): 

Data with a small p-value may be nearly equally consistent with H and K (this is 

particularly noticeable when the null and alternative distributions are very similar). 

 

Problem (iv): 

The p-value is very insensitive to the exact formulation of K – an unsatisfactory 

feature for any measure of relative evidence. 

 

 

11.3 Improving frequentist inference by conditioning.  

 

The conditional methods of Fisher and Cox (who allied it with the work of Neyman 

and Pearson) seem to suggest a way in which frequentist inferences can be improved, 

since removing parts of the sample space that have been identified as irrelevant to the 

question at issue may improve the quality of the inference.  However, these methods, 

although they can produce results that are dramatically different from the 

unconditional, do not bring us any closer to avoiding the problems described above, 

nor do they mitigate the scale of these problems to even the slightest degree.   

 

                                                 
2 Problems i. and ii. are closely related to each other but describing them in this way makes the 
evidential unreasonableness more apparent. 
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Evidently, a small conventional p-value is not a sufficient reason to reject H (in favour 

of K) since it does not guarantee a small likelihood ratio, but this is also true of the 

conditional p-values produced by Cox or Fisher’s methods.  For example, in Cox’s 

two-stage example using two Normal populations, the conditional test is simply the 

conventional (i.e. unconditional) test that would have been applied had there been 

only the one (observed) population; it is therefore subject to the full force of the 

problems cited above. 

 

In contrast, the more robust conditional principle, used by Birnbaum, combines with 

the SP to give the LP; this is satisfied by techniques3 (such as that of Royall) that are 

completely free of these problems, however these techniques are not frequentist.   

 

There is a huge gap between the effect of Cox’s conditionality principle and 

Birnbaum’s.  We were intrigued by this disparity and wondered whether there was 

any way in which conditioning could be used, within the confines of frequentism and 

without breaching the SP, to remove or mitigate some of the more outstanding 

problems.  The fact that many statisticians are deeply wedded to the frequentist 

approach was a major consideration is pursuing this question. 

 

It can be argued that, in an evidential context, we ought not to test composite 

hypotheses since the different elements of the composite (i.e. component simple 

hypotheses) are likely to return varying measures of relative evidence for any given 

data, and it follows that no measure of evidence is valid over the whole composite.  

This motivated us to consider testing simple hypotheses only, that is, using binary 

parameter spaces.  Exhaustive conditional inference (ECI) uses Cox’s conditional 

principle (which we have called ‘restricted’), exactly, but applies it to statistics that 

are ancillary on binary parameter spaces instead of the traditional large parameter 

spaces; this makes a critical difference because we have been able to identify optimal 

versions of such ancillary statistics for a wide range of cases.  Even though this 

approach is unequivocally frequentist, problems (i) and (ii) never occur, and the 

extent of problems (iii) and (iv) is generally reduced, and, in some cases, completely 

overcome.   
                                                 
3 Most Bayesian inferences also satisfy the LP but it is not necessary to use priors in order to achieve 
this. 
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In addition to the direct argument (above) for using simple hypotheses, it seems that 

using binary parameter spaces is a more effective way of extending conditioning, 

within the frequentist framework, than allowing the use of statistics that are 

approximately ancillary on the large parameter space.  We have access to an 

exhaustive ancillary statistic4, which defines a strong form of optimality, and the 

method is more straightforward because we do not need to specify how close to 

ancillary a statistic must be before we condition upon it – a question that raises many 

other questions.  The ‘which ancillary statistic’ dilemma is exacerbated by allowing 

approximate ancillaries to stand in competition with non-optimal exact ancillaries, 

whereas the fact that ECI is optimal solves5 this problem.  

 

11.4 Properties of exhaustive conditional inference. 

ECI mitigates or solves problems (i)-(iv). 

ECI solves problems (i) and (ii) in all cases, as follows.  Since the critical likelihood 

ratio of any test defined by a small conditional significance level is less than one, the 

rejection region for ( )
( )

H

K

f x
f xy = �

�
 is always of the form 1(0, ]r  where 1 1r < .  Hence we 

cannot observe any data that is both in the rejection region and much more consistent 

with H than K.6  Since we reject K (as null) in favour of H only when 2[ , )y r∈ ∞  

where 2 1r > , it follows that no data can result in both the rejection of H in favour of K 

and the rejection of K in favour of H. 

 

Exhaustive conditional inferences can suffer from problem (iii), for instance, in the 

Exponential case with 1n =  and 1.01q = .  In that case the distributions of Y  under H 

and K are very similar for 1y < , and data with a non-significant likelihood ratio of 1
2  

has a cp-value of 1%, indicating significance.  This is unsatisfactory but an 

improvement on the conventional result, since the p-value is even lower.  On the other 

                                                 
4 This is restricted to cases where Y  is a continuous variable and a few ad hoc extra cases. 
5 At least, up to the point where we have two competing exhaustive ancillary statistics, and we have yet 
to identify such a case when Y  is continuous. 
6 Thus ECI renders redundant Kendall and Stuart’s ad hoc modification to conventional inference, 
which was designed to solve problem (i). See Kendall & Stuart, pp. 182, 183. 
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hand, in the cases 1
2q =  and 2

3q = , where no data has a small likelihood ratio, ECI 

produces cp-values that are not significant, for any data, unlike the p-values.  Thus, 

when 1.01q = , problem (iii) is mitigated by ECI and when 1 2
2 3or q = , it is solved.  

There is some evidence that, in any particular case, using a sufficiently large sample 

will solve this problem; this is certainly true in the Exponential case and may be true 

more generally. If so, it contrasts with conventional inference, where increasing n  

ultimately exacerbates the problem (see Figure 10.18).  

 

With respect to problem (iv), we note that ECI is usually very sensitive to the exact 

formulation of the alternative hypothesis, K.  Consider right-sided Normal location 

tests of the form H: 1µ µ=  versus K: 2µ µ=  where 2µ  can be any value greater than 

1µ .  The cp-value of any fixed observation, x , varies with 2µ  (and thus the cut-off 

value for any α -level test also varies 2µ ), whereas the conventional p-value of x  is 

constant over all 2 1µ µ> .  The following diagram shows the cp-values and p-values 

of the observations 1.5x =  and 2.5x =  for testing 1 0µ =  versus 20 3µ< <  where 

1σ = .  

 

Figure 11.1 
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We have derived some general results about the pairing functions of DDF statistics 

and from them can deduce some of the general properties of ECI.  However, there is 

much that we do not know about pairing functions and our knowledge of the general 

properties of ECI is similarly limited.  Over and above the properties discussed above, 
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we are left with conjectures and some general impressions of ECI based on our 

observations of the examples given in Chapter 10.  Since these particular examples 

may be influential, we should say something about how they were selected.   

 

The models we considered are those most commonly discussed and used for 

conventional inference.  Our choice of hypotheses was based on simplicity and, where 

possible, we looked for cases where an explicit form could be calculated for the 

pairing function, as in the Exponential model with 31 2
2 3 2, ,q =  and 2.  We spent some 

time looking for cases where the ECI breaks down (and found them in some scenarios 

with hypotheses extremely close together) – this was the only type of result that we 

sought out. When it came to choosing data, we always included observations where 

the conventional inference gives poor results, in order to ascertain whether or not ECI 

would improve matters.  The Gradient model was developed out of a desire to find a 

model that would reproduce some of the useful features of Welch’s Uniform model 

(simplicity, intuitiveness, and the ability to illustrate issues to do with universal 

ancillarity), with an explicit pairing function (giving the general form of the ECI), but 

without the complication of a discrete likelihood ratio statistic leading to breaches of 

the sufficiency principle. 

 

Other desirable properties of ECI. 

The DDF statistics on which ECI is based are exhaustive, meaning that the subset of 

the sample space that remains after conditioning is as small (in terms of the number of 

distinct y -values) as an ancillary set can ever be.  It follows from this that no more 

conditioning can be done without the loss of ancillarity.  Let D  be the DDF statistic 

and A  any other statistic ancillary on the binary parameter space.  When we condition 

on both these statistics, we are conditioning on A D× , then either A D×  is equivalent 

to D  alone, or A D×  is not ancillary.   

 

It follows from this that the DDF statistic is always a maximal ancillary statistic.   

 

ECI satisfies the sufficiency principle for the given binary parameter space since the 

DDF statistic is a function of the likelihood ratio statistic, which is minimal sufficient.  
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(Recall that conditioning on a statistic that is ancillary on a large parameter space 

often breaches the SP with respect to a given BPS and thereby introduces an arbitrary 

element into the inference.)   

 

A small Type I error probability, of the traditional kind, is frequently guaranteed by 

an ECI test.  This is always the case when the resulting critical likelihood ratio is 

small, by Robbins’ result (see §7.3: Robbins’ result), and often even when it is not.  

Thus the Exponential scenario with 1n =  and 1.01q =  and conditional significance 

level of approximately 1% does not have a small CLR since 1
2CLR ≈ , nevertheless 

the unconditional significance level is almost zero.  A small Type I error probability is 

a desirable before-experiment design characteristic of a test although we do not 

believe that it should be the basis of an after-experiment evidential inference.  In none 

of the cases that we have examined has the ECI produced a large Type I error 

probability or even a Type I probability that is greater than the (appropriately small) 

conditional significance level, however we have not proved that this can never 

happen. 

 

Continuity. 

A point of inferential discontinuity occurs when two scenarios (including data) are 

arbitrarily similar but result in inferences that are not arbitrarily close.  Optimal 

unconditional inferences are continuous because, as one scenario (or series of 

scenarios) tends to a limiting case, so do all the components of the inference – such as 

the p-value – and thus the inferences converge.  However, when we condition on 

exact ancillary statistics, a situation can arise where a particular statistic is exactly 

ancillary in the limit but not elsewhere (or vice versa) so that the limiting inference is 

conditional and substantially different from the limit of the other, unconditional, 

inferences.  Allowing an inference to be made conditional upon a statistic that is 

approximately ancillary (weakly dependent on θ ) can seem like a solution to this 

problem, but it only moves the point of discontinuity, it does not remove it.  Savage 

(1970) pointed out that the requirement that an ancillary statistic be a function of the 

MSS contributes to the problem yet ignoring this requirement causes breaches of the 



 Chapter 11: Summary and conclusions. 

 360

sufficiency principle or takes one out of frequentism.  Conventional conditional 

inference causes many such discontinuities. 

 

If we use conditional inference in some cases, but not in others (because no ancillary 

statistic exists7), such discontinuities will inevitably occur.  How should we create a 

general method that incorporates ECI?  We could use ECI whenever the DDF statistic 

in ancillary (essentially when Y  is continuous and in some other ad hoc cases) and 

use either unconditional or a combination of unconditional and conventional 

conditional methods otherwise.  In this case our overall approach will contain many 

discontinuities, although there will be none within the class of cases to which ECI is 

applicable.   

 

Within the ECI class of scenarios, there is continuity.  This follows from the fact that 

the ancillary statistics on which ECI is based all have the same basic structure – they 

are the difference of the distribution functions of the likelihood ratio statistic; thus, 

whenever a series of such scenarios converges to a limiting case also of this form, 

their DDF statistics must converge to the limiting DDF statistic; since their DDF 

statistics are all exactly ancillary, they are all conditioned upon with the result that the 

inferences converge.  Traditional conditioning has been based on the use of ancillary 

statistics that have no particular structure in common (other than ancillarity) and are 

fairly rare; there is, therefore, no continuity claim that can be made about the class of 

scenarios subject to this type of conditioning.   

 

Since we have shown that unconditional and conventional conditional methods do not 

(generally) produce realistic evidential measures, we might prefer to limit ourselves to 

using ECI where this is possible and leave other cases unaddressed.  This approach 

creates a coherent whole but at the cost of leaving many standard scenarios outside 

the scope of the method. (If the sample is very large, it may be the case that the 

distribution of Y  is very well approximated by a continuous distribution – even 

though actually discrete – and we might choose to use ECI as an approximation.  

                                                 
7 There are many cases where no ancillary statistic exists. To create an example of such a case, simply 
define a variable on a very limited discrete support (e.g. 1, 2, 3 4{ , }x x x x ) and define two distinct and 
valid probability distributions on the support such that no x -value, or combination of x -values, short 
of the entire set, has the same total probability under both distributions. 
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However, care must be taken in identifying appropriate approximating distributions; 

traditional approximations, such as the Normal approximation to the Binomial, have 

been used because they approximate tail-areas well, rather than densities, and they 

approximate the likelihood ratio ( )
( )( )H

K

P x
P xy =  only poorly.) 

 

There is a third possibility, namely that we could use likelihood methods when the 

DDF is not ancillary.  However, I take it that anyone prepared to do this is not very 

attached to frequentism and might as well use likelihood methods across the board. 

 

Closer to a ‘likelihood’ interpretation. 

Whether or not one regards closer agreement with likelihood methods as a point in 

favour of ECI depends on one’s attitude to the former.  However, it is interesting to 

note that a greater level of congruence between frequentism and the likelihood 

method of Royall, for instance, can be achieved by conditioning exhaustively.  ECI is 

not consistent with the likelihood principle since it does not produce a universal 

relationship between the LR and the cp-value (there is more than one inference class), 

yet it produces inference classes of substantially greater size than those produced by 

other frequentist methods and the universal upper bound (one) on the value of the 

critical likelihood ratio (for any 100%α < ) ensures that there is a limit to how much 

the cp-value and likelihood ratio can conflict.  In many cases, most obviously those in 

the log-symmetric category, ECI provides a frequentist justification for a test 

procedure that is perfectly consistent with a likelihood outlook. 

 

Different stopping rules will usually produce different p-values for the same data, 

even when the likelihood ratio of the data is the same.  If we adhere to the LP, this 

ensures that data produced by two different stopping rules, but with the same 

likelihood ratio, is interpreted the same way.  ECI only has this effect if both stopping 

rules produce the same pairing function, as sometimes happens.  However, even when 

this is not the case, if both stopping rules produce cp-functions 1 2(  and )cp cp  that are 

increasing in y , then the general results ( )cp y y<  and 1
21

lim ( )
y

cp y
→

=  ensure that  

 1
1 2 2| ( ) ( ) | min( , ),  (0,1).cp y cp y y y− ≤ ∀ ∈  
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While, if both stopping rules produce cp-functions that are decreasing in y , then y  

must be bounded below by some value 1
2 ' 1y< <  and  

 1
1 2 2| ( ) ( ) | ' ,  [ ',1).cp y cp y y y y− ≤ − ∀ ∈  

In all cases, 1 2| ( ) ( ) | 0,  1cp y cp y y− = ∀ > , since any cp-value of a likelihood ratio 

greater than one is 100%. 

 

It is also the case that ( )p y y< , and this places a non-trivial bound on the difference 

between two conventional p-values when 1y < , however, the fact that a value of 

1y >  may produce a small p-value means that there is no non-trivial upper bound on 

the absolute difference between the p-values produced by two different stopping rules 

when 1y > .  

 

Practicality. 

Although tedious to perform on an ad hoc basis, exhaustive conditional inference, 

including test and interval results, could easily be incorporated into statistical software 

packages.  In addition, it is particularly simple to perform complete ECI – covering 

cp-value, significance level, power and interval estimates – on the log-symmetric 

class of scenarios where all these measures are simple functions of the likelihood ratio 

of the data, and the functions are the same for every scenario within the class (in 

contrast to unconditional inference, even in the Normal case).  Were it to be shown 

that the log-symmetric class covers a great number of scenarios asymptotically, then 

(subject to some knowledge of convergence rates) this analytic simplicity would 

extend to a wide range of cases. 

  

11.5 Conjectures and unanswered questions. 

Asymptotic convergence of ECI. 

There is a possibility that the cp-values for a wide range of scenarios may converge as 

n →∞ , creating a large asymptotic E. C. inference class.  Such a class can only 

include the Normal location scenario if the limiting inference is that which applies to 

the log-symmetric cases, i.e. (1 )( ) y
ycp y +=  ( 1)y <  and in Chapter 10 we showed that 
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this was at least a possibility.  The implications of this would be considerable since it 

would mean that, when n  is large, ECI – which is a purely frequentist method – gives 

something very close to a likelihood interpretation of the data. This follows from the 

fact that the consistent relationship between the likelihood ratio ( )y  and the cp-value 

is such that values of the likelihood ratio usually regarded as significant evidence 

against H relative to K correspond to cp-values that are similarly interpreted (see §8.7: 

The cp-value and the likelihood ratio).   

 

Is the DDF statistic uniquely exhaustive? 

We have not shown that the DDF statistic is the only exhaustive ancillary statistic that 

can be defined for these scenarios.  We have limited this discussion to cases where the 

likelihood ratio statistic, Y , is continuous, because this is a sufficient condition for 

identifying an exhaustive ancillary statistic – the DDF statistic.  In cases where Y  is a 

discrete variable, there will usually be no exhaustive ancillary statistic, but it is 

possible to find examples where there are two non-equivalent exhaustive ancillary 

statistics.  We have not identified any exhaustive statistics, other than the DDF 

statistic, for continuous Y , but this does not prove that such cases do not exist.  Any 

exhaustive ancillary statistic can be defined by a pairing function; the pairing function 

of the DDF statistic is decreasing in y  when 1y < .  If we could show that, for 

continuous Y , all exhaustive ancillary statistics have pairing functions that are 

decreasing in y  when 1y < , then it would follow, from an inversion of the proof of 

ancillarity in Chapter 9 (§9.2: Proof), that the DDF statistic is uniquely exhaustive.  

The log-symmetric models (Chapter 8) and the Gradient model (Chapter 10) have 

symmetry properties that allowed us to identify exhaustive ancillary statistics directly 

( | ln |Y  and | |X  respectively); each of these ancillary statistics is ‘equivalent’ to the 

corresponding DDF statistic. 

 

Is it ever the case that the cp-value is significantly small but the p-
value is not?  

We have come across no instances of cases where the cp-value indicates significant 

evidence against H, relative to K, but the conventional p-value does not.  This 
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certainly cannot happen in any of the log-symmetric cases where we have shown that 

the p-value is always less than the cp-value.  (And, this may be true more generally if 

the asymptotic conjecture is true.)  In both the Gradient and Exponential models, there 

are some cases where the cp-value is less than the p-value but, in all those cases, both 

values are greater than 50% so significance is not an issue.  If it could be shown that 

the function ( )cp y  on (0,1)  is always either, (a) monotonic increasing, (b) monotonic 

decreasing, or (c) constant8, this would be sufficient to show that there are no cases 

where the cp-value, but not the p-value, is significant, as follows.  

 

Recall that ( ) 50%cp y →  as 1y → .  Thus, for (b), the result is trivial since 

(b) ( ) 50% ( 1)cp y y⇒ ≥ ∀ <  and hence ( ) ( )p y cp y> ⇒  ( ) 50%p y >  and not 

significant.  Under assumptions (a) and (c), it is possible to show that ( ) ( )p y cp y≤  

by using the same approach as the proof of this result in the log-symmetric case 

(§8.11) and the fact that, for all DDF statistics and 0 1y < ,  

 
1

1 0
0

( ),  ( )
( )

non-existent, elsewhere.
D a a D y

y a
−⎧ ≤

= ⎨
⎩

 

 

 

11.6 Two fundamental criticisms of ECI. 

 

ECI allows one to condition to the maximum degree possible while still remaining 

frequentist.  Since any conditional principle is closely connected to the likelihood 

principle – logically, if not psychologically9 – it follows that conditional inference is 

partly motivated by elements associated with that principle, as well as with traditional 

frequentism.  The most fundamental criticisms that can be made of ECI are those that 

are implicit in the pure form of either of the two intellectual traditions underlying 

conditional inference.   

 

                                                 
8 We have no counter-examples to this claim. 
9 Those who are attached to a conditional principle do not necessarily have any sympathy for the LP, to 
which they may even be deeply opposed, yet all versions of the CP are entailed by the LP and seem to 
share the same ‘relevance’ motivation. 
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In the section on continuity, we noted that depending on how we incorporate ECI into 

frequentism, we either produce a method with many points of inferential discontinuity 

or a method that is less widely applicable than alternative methods.  Each of the 

following approaches, at odds with ECI, solves both these problems. 

 

Unconditional inference. 

In the earlier chapters of this work, we were at pains to explain and defend the 

position sometimes called ‘the two machines argument’, which maintains that a 

conditional inference is superior for assessing evidence or showing ‘what the data 

tells us’ about a particular question.  At the heart of this argument is the perceived 

irrelevance of outcomes within unobserved ancillary subsets of the sample space, 

which can be equated to machines that were not used in the experiment or 

unperformed sub-experiments.  Despite what we regard as the compelling nature of 

this argument, it is not universally accepted.  Welch, for example, dismissed the 

Fisherian version of the argument on the basis that the overall (average) power of a 

test (rather than the conditional power) was the ‘real’ power, and there is no question 

that the overall power of a conditional test procedure is lower than that of the optimal 

unconditional test with the same overall significance level.  If, on this or any other 

grounds, one does not accept the desirability of conditioning, even when the aim of 

the exercise is to find evidence, then the ECI project has no appeal.  This is a 

fundamental criticism since acceptance of the two machines argument is a primary 

motivation for pursuing any conditional approach.  To support unconditional 

inference, it is necessary to justify overlooking the anomalies that it produces (such as 

(i)-(iv) in §11.2), either on the basis that they are not really anomalies (by disputing 

our implicit interpretation of ‘evidence’, for instance), or on the basis that they are a 

price worth paying for the advantages of unconditional inference.   

 

ECI does not go far enough. 

In response to the two machines argument, we have identified certain ancillary 

statistics with a view to conditioning upon them.  In order to retain both the 

sufficiency principle and the general frequentist framework, we have defined 

‘ancillary’ in a way that is more restricted than Birnbaum’s version.  With this 
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restriction in place, exhaustive conditional inference is as far as we can go towards 

homing in on the most relevant part of the sample space, but does it go far enough?  

According to the likelihood principle the only relevant element of the sample space is 

the data or likelihood ratio actually observed ( 0y ) and no other observation should 

influence the analysis.10  On this view, the entire frequentist project is completely 

wrong-headed. 

 

Fisher’s proposed remedy [to the problem created by different data containing 

different levels of reliability] was not to question the orthodox reasoning which 

caused this anomaly, but to invent still another ad hockery to patch it up: use 

sampling distributions conditional on some ‘ancillary’ statistic 1( , , )nz x x…  that 

gives some information about the data configuration that is not contained in the 

estimator11. 

 

Since the two machines argument justifies the unrestricted conditional principle, one 

can argue that it should move us to abandon frequentism in favour of the likelihood 

principle.   We then satisfy both the unrestricted CP and the SP, and an approach, such 

as that of Royall, is free of all the problems that we have highlighted ((i)-(iv)), 

simplifies the methodology by the direct use of likelihood ratios, and is inferentially 

continuous and generally applicable.   

 

 

11.7 Likelihood-like frequentism. 

 

This work evolved from frequentist traditions and, therefore, rules out the use of prior 

probabilities on hypotheses. Given this constraint, there are three major options 

available: (i) a reasonably pure version of Neyman-Pearson methodology, (ii) a purely 

Likelihoodist method, or (iii) some kind of foot-in-each-camp approach.  Any 

approach of the third kind is likely to be motivated by a preference for conditional 

inferences over unconditional, and this, in turn, implies an interest in evidence.  ECI 

                                                 
10 In ECI, 0( )yπ  influences the result. 
11 Jaynes (2003), p. 253. 
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satisfies these requirements best (within a frequentist framework), since it involves 

stronger conditioning than any other frequentist approach and, although it requires the 

use of binary parameter spaces, there are good independent reasons for doing this if 

you want to evaluate evidence.  What light does the development of ECI cast on the 

pure theories?  

 

On the one hand, ECI tends to confirm the view that the conventional error 

probabilities (and p-value) of a test do not measure anything useful, at least, from the 

point of view of someone primarily interested in evidence.  The conventional 

significance level of any test of simple hypotheses is revealed as the (before 

experiment) expectation of the significance level, over an infinite number of notional 

sub-experiments, of varying quality, only one of which is actually performed to 

produce the data.12 

 

On the other hand, ECI provides a frequentist justification for the type of results 

produced by non-frequentist methods such as that of Royall.  The development of ECI 

shows that an inference method does not necessarily give results that are substantially 

different from likelihood results simply by virtue of being frequentist.  We have seen 

many cases where ECI interprets the data in a way that is either very similar to or 

(allowing for the different measures used) equivalent to the interpretation based 

directly on the likelihood ratio value, while both are substantially different from the 

unconditional reading of the data, and this seems to be the case (on both counts) 

whenever the sample size is sufficiently large.  It is thus no longer simply a matter of 

choosing between frequentist and likelihood interpretations, even as a first step; a 

much greater incongruity lies between the results obtained by conventional 

frequentism (including the limited forms of conditioning available to date) and 

exhaustive frequentism than between the latter and likelihoodism. 

 

                                                 
12 Where the choice of sub-experiment is independent of hypothesis. 


