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Chapter 3: Some problems with evidential frequentist 
inference. 
 

3.1 Tests of two simple hypotheses.                                     

 

Consider testing hypothesis H against hypothesis K, where H and K are both simple 

hypotheses that (together with the background assumptions) completely specify the 

distribution of the test statistic. 

The trial interpretation. 

 

There is a widespread view, encouraged by textbooks, that hypothesis tests are so 

constructed that H is only rejected when there is very strong evidence against it.  

Consistent with this view, hypothesis testing is sometimes described as analogous to a 

criminal trial where the null hypothesis says that the defendant is innocent and the 

alternative hypothesis says otherwise.  In this construction, the null hypothesis is the 

default or starting position and can only be overthrown by very strong evidence 

against it.  In a section entitled “Significance testing procedures: statistician as juror”, 

Smith writes “In all significance testing procedures, H0 is assumed to be true until the 

test statistic indicates otherwise, beyond reasonable doubt.1”.   

 

Similarly Efron states,  

 

…because there is a vested interest in discrediting H, conservative statistical 

methods have been developed which demand a rather stiff level of evidence 

before H is declared invalid.  The frequentist theory, which is dominant in 

hypothesis testing, accomplishes this by requiring that the probability of falsely 

rejecting H in favour of K, when H is true, be held below a certain small level, 

usually .05.2 

 
                                                 
1 Smith, p.516. 
2 Efron, p. 241. 
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Example 3.1 

 

Suppose we are interested in the mean height (cm) of the males in a particular 

population where the heights of males can be assumed to be Normally distributed and 

the standard deviation is known to be 8cm.  We have a random sample of 16n =  

individuals whose heights we have measured producing an average of 167.9cm. 

 

The previous generation who grew up with food shortages had a mean height of 

163cm; we wish to test the hypothesis of no change against a claim that the population 

mean has increased dramatically, by 16cm, to 179cm. 

 

We have independent and identically distributed random variables, 1 16, ,X X… , where 

2~ ( ,8 )iX N µ  and data 167.9x = . 

 

Suppose we carry out a test of H: 163µ =  versus K: 179µ =  at the 1% significance 

level, then we will reject H if 8
0.99 16

163x z≥ + 167.653=  (where 1( )zγ γ−= Φ ).  Since 

167.9x = , we will reject H in favour of K even at the 1% level.  However, if we look 

at the graphs below, it does not appear that this data provides evidence beyond 

reasonable doubt that µ  equals 179 rather than 163.  On the contrary, the data (167.9) 

is clearly more consistent with H than with K.   

 

Figure 3.1 
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Figure 3.2 
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According to Kendall and Stuart, we should stick with H under these circumstances:  

 

It is perfectly possible for a sample of observations to be a rather “unlikely” one 

if the original hypothesis were true; but it may be much more “unlikely” on 

another hypothesis.  If the situation is such that we are forced to choose one 

hypothesis or another, we shall obviously choose the first, notwithstanding the 

“unlikeliness” of the observations.  The problem of testing a hypothesis is 

essentially one of choice between it and some other or others.3 

 

Bias in favour of K. 

 

Here we have an example where, despite the small p-value (less than 1%) we do not 

have strong evidence against H, relative to K, and any test that tells us to reject H in 

favour of K under these circumstances is clearly biased4 in favour of K. 

 

The idea that hypothesis tests are automatically biased in favour of H so that H is like 

the presumption of innocence – only rejected when the evidence against it (relative to 

                                                 
3 Kendall & Stuart, p. 164. 
4 We use the term ‘biased’ because it is by far the most appropriate.  Note that this is not the same 
notion of bias usually referred to in the term ‘biased test’ (although our definition also applies to tests); 
the conventional meaning is : ( ) 1i K iθ β θ α∃ ∈Θ > − , which is less clear cut than the form of bias 
examined in this section. 
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K) is very strong – is clearly false.  In most of the examples shown in introductory 

textbooks, the null and alternative hypotheses are fairly close together relative to the 

spread of the test statistic.  In practice hypotheses are just as likely to be far apart.  In 

the Normal case, the standard deviation of the test statistic, X , is nσ  and the 

difference between the hypothesised means, 1 2| |µ µ− , will be large in terms of 

nσ  whenever n  is sufficiently large – with enough data, any two hypotheses can 

be ‘far apart’.  For a test of two hypotheses (H: 1µ µ=  versus K: 2µ µ= ) with known 

σ , it seems reasonable to say that when the cut-off value (in terms of x ) is closer to 

1µ  than to 2µ  then the test is biased in favour of K and that the test is only biased in 

favour of H when the cut-off value is closer to 2µ  (than 1µ ).  Since the cut-off value 

(for a right-sided test) is 1 1z nαµ σ−+ , the test will be biased in favour of K 

whenever   

 1 1 2 1( ) ( ) / 2z nαµ σ µ µ−+ < + . 

 

For fixed values of 1 2, ,  and µ µ σ α , this occurs whenever n  is sufficiently large, 

 
2 2
1

2
2 1

4i.e. 
( )

zn ασ
µ µ

−>
−

. 

In Example 3.1, the key to the existence of the bias in favour of K and the misleading 

nature of the test result lies in the choice of significance level.  A significance level of 

1% is fairly low, but the probability of Type II error ( β ) was much lower 
7(7 10 )%−× .  We make α  small in order that the null hypothesis will be wrongly 

rejected in only a small proportion of cases.  Sometimes this means that β  (=1-

power) is quite high and α β<  in which case the test is biased in favour of H5.  

However, keeping α  small does not guarantee that the test will be biased in favour of 

H or even that the test will not be strongly biased in favour of K.  Although β  is a 

decreasing function of α  (so that, all other things being equal, making α  smaller will 

                                                 
5 For the Normal case, the following three conditions are equivalent and can be interpreted as ‘bias in 
favour of K’: 

• c  is closer to 1µ  than 2µ , where c  is the critical value for x . 

• α β> , 
• ( ) 1LR c > .  



 Chapter 3: Some problems with evidential frequentist inference. 

 30

make β  bigger), β  is also a function of other factors such as and nσ , so it is 

perfectly possible for a small α  to produce an even smaller β .  When β α<  we are 

more likely to wrongly reject H than to wrongly accept H indicating that the bias is 

now in favour of K.  It is odd that this problem typically occurs when n  is large.  In 

such a case we have a lot of information as indicated by the fact that we are able to 

produce a test with both error rates so low.  Here, if anywhere, we ought not to have a 

problem.   

 

The difficulty arises because the theory seems to have been devised to deal with the 

challenges associated with limited data.  In such a case, it would be easy to end up 

with a high significance level.  The theory emphasises that we must not do this, that 

there may be serious consequences associated with wrongly rejecting H.  (In fact, 

many books encourage us to identify the null hypothesis by asking which hypothesis 

we would be more afraid to wrongly reject; this is often further complicated by the 

view that placing the burden of evidence on any new claim should dominate this 

judgement.  Thus the common identification of the null hypothesis with ‘no effect’ is 

justified on the basis that we would not want a finding that (say) a new drug is more 

effective when it is not, although it is not clear that the ill effects of adopting a new 

drug, that is no more effective than the old, are really greater than the ill effects of 

failing to identify a more successful new drug.)  For this reason we must always 

choose α  to be appropriately small – at most 5%, but 1% or lower if the 

consequences of wrongly rejecting H are particularly bad.  This emphasis ignores the 

fact that we will sometimes have a lot of data or measurements from an extremely 

accurate machine.   

 

It is tempting to assume that an approach that works well with limited data will work 

even better with large amounts of data and this should be the case, the fact that it is 

not points to a flaw in the method.  The problem lies with fixing α ; α  is not allowed 

to exceed 5%, but, to prevent the test from being biased against H, it is necessary, not 

only that α  be small, but that it be at least as small as β .  In the Normal distribution 

case, the requirement α β≤  is equivalent to the requirement that ( ) 1LR c ≤  (where c  

is the critical value for x ).  (For models with skewed distributions these two criteria 

may not be exactly equivalent and ‘critical likelihood ratio less than one’ may be 
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preferred over α β<  as the definition of bias in favour of H.  However this 

requirement can generally be satisfied by making α  ‘sufficiently much’ less than β .)   

If we want there to be no bias in favour of K, we must make sure that α  is extremely 

small whenever we have a very large amount of information.  Yet we choose α  in 

advance and textbooks do not suggest that a significance level of, say, 2010−  might be 

appropriate in certain circumstances, simply to prevent bias in the test.  In the heights 

example, using the rejection region [171, )∞ , instead of [167.653, )∞  would have 

given us 53.2 10α β −= = ×  instead of 210α −= , 97 10β −= × .  This would be a 

particularly reliable test, since both the error probabilities are so low, and surely this is 

what we should expect to happen when the hypotheses are so far apart and so easy to 

distinguish from each other.  When n  is very large (or for some other reason it is easy 

to choose between the two hypotheses) the significance level should automatically 

become very small, but α  is chosen from a conventional range of values according to 

the seriousness of the Type I error and no other criteria.  The optimality in Neyman-

Pearson inference applies to β  only, for a pre-determined, fixed value of α .  There is 

no sense in which the value of α  is optimised.  In the heights example we see that 

using 1%α =  – usually regarded as a low value – forces us to reject H in favour of K 

although the data is much more consistent with H; we can easily create similar 

examples for anyα  (no matter how small) by making the two hypotheses far enough 

apart.  The problem is not solved by using p-values instead of fixed α  levels since it 

becomes necessary for us to rethink the idea that small p-values indicate evidence 

against H relative to K; in certain circumstances a p-value of 1010−  may not be at all 

significant in this sense. 

 

In the 1967 edition of their classic text Kendall & Stuart discussed this problem and 

came to the following conclusion:  

 

The [null] hypothesis tested will only be rejected … if we keep α  fixed as n  

increases.  There is no reason why we should do this: we can determine α  in any 

way we please, and it is rational … to apply the gain in sensitivity arising from 

increased sample size to the reduction of α  as well as of β .  It is only the habit 

of fixing α  at certain conventional levels which leads to the paradox.  If we allow 
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α  to decline as n  increases, it is no longer certain that a very small [i.e., ‘small’ 

by comparison with the difference between the two hypotheses] departure from 

H0 will cause H0 to be rejected: this now depends on the rate at which α  

declines.6   

 

The 1991 edition added the following sentence to this passage: 

 

A reasonable, though arbitrary, solution is to make α  equal to β  at the smallest 

departure from 0H  that is of practical importance.7  

 

(Thus, in the previous example, we would place c  exactly midway between the two 

hypothesised values.) 

 

It follows from this that a given ‘significant’ p-value implies evidence against H 

relative to K to a greater degree when the sample size is small; this is consistent with 

the view of Lindley & Scott.  It is just as strong a counter-example to Fisherian 

methods as to those of Neyman and Pearson since it contradicts Fisher’s belief (still 

widely accepted) that the p-value alone allows one to make evidential inferences.  

Despite the prominence of Kendall & Stuart’s text, this particular piece of advice has 

fallen on deaf ears for forty years; no textbook advises students to draw their selection 

of significance level from anything other than the small range of conventional values 

usually considered appropriate, nor is there any indication that the value of n  is 

relevant to choosing α .   

  

Two further points need to be made.  Clearly it is not enough to base α  on n  alone 

since other reliability factors are equally relevant.  In the Normal case, the standard 

deviation of X  is nσ  and is thus equal to one regardless of whether we have 

20 and 400nσ = =  or 2 and 4nσ = = .  If 1 2| | 10µ µ− = , then in both cases the 

hypotheses are ten standard deviations apart suggesting that α  will need to be 

extremely small if the test is not to be heavily biased in favour of K, yet in the second 

case we have a sample size of four which would not normally be regarded as ‘large’.  

                                                 
6 Kendall & Stuart, p. 183. 
7 Stuart, et al., p. 193. 
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Also, for fixed values of  and n σ , the value 1 2| |µ µ−  is important in choosing an 

appropriate value of α .  If we want all our tests to have bias of the same level and 

direction, we must choose α  based on these three factors and this raises the 

possibility that we might not see a given value of α  as having any particular 

significance or interpretation.   Thus suppose we were to carry out two tests: one of 

H1: 1µ µ=  versus K1: 2µ µ= , and one of H2: 3µ µ=  versus K2: 4µ µ= , where 

 and n σ  are the same for both tests but 1 2| |µ µ− 3 4| |µ µ≠ − .  If we want the bias in 

favour of H1, in test 1, to be of the same magnitude as the bias in favour of H2, in test 

2, we will need to choose different values of α  for the two tests.  If we then (say) 

reject H1 in favour of K1 and reject H2 in favour of K2, it is tempting to attach 

exactly the same evidential significance (however defined) to the rejection of the null 

hypothesis in both cases; thus the significance level is no longer the significant 

measure even when the sample sizes are the same, and the precise nature of the 

alternative hypothesis has much more influence over the test result than is currently 

the case. 

 

Here we come close to the boundary between competing theories of inference.  

Suppose that we adjust α  in the way suggested by Kendall and Stuart (or a more 

sophisticated version); is this an innocuous alteration to the theory, or does it cut at 

the heart of the assumptions behind using frequentist inference?  On the face of it we 

may adjust the significance level to take into account anything, including our ability 

to discriminate between the hypotheses, without conflicting with the theory of 

Neyman and Pearson – we understand that the choice of α  is ours to make even if we 

do not take advantage of this freedom often.  However, if we want to calculate the 

value of α  so that there is no bias in favour of K, we start to wander into the territory 

of alternative inferential theories.  In a case where the usual values of α  all produce 

tests biased (to some degree) in favour of K, we may decide to make α  still smaller – 

for instance, just small enough so that there is no bias in the test.  This will amount to 

choosing the critical value, c , according to the formula ( ) 1LR c = ; the value of c  so 

derived will then dictate the values of α  and β .  Insofar as we are making the critical 

value of the likelihood ratio (in this case one) dominate α  and β , this is coming 

close to being a likelihood method rather than a frequentist method.  The modification 
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has substantially changed the emphasis of the theory: we are now making α  

extremely small, not because the consequences of wrongly rejecting H are very 

serious (the justification allowed by Neyman-Pearson theory), but rather because 

using a conventional value of α  will cause the test to give us ‘misleading’ results.  

These results are not misleading in the sense that they miscalculate the error 

probabilities (which are at the core of Neyman-Pearson inference), nor are the 

probabilities unreasonably large; it is simply that the conventional choice of α  gives 

intuitively silly results.  If we decide that data lying in the 1% (optimal) rejection 

region does not necessarily justify rejecting H but that data with a low likelihood ratio 

does, we have abandoned frequentist inference entirely. 

 

 

Insensitivity to K. 

 

In this discussion, we talked in terms of the evidence for either one of the hypotheses 

relative to the other because this is what those who carry out hypothesis tests are 

primarily interested in.  While most of us recognise that the basis of this type of 

inference is controlling the error probabilities so that the test results will not be too 

often wrong, we tend to believe that we can use this mechanism to find out what the 

data has to say about the hypotheses.  The following feature of tests throws doubt on 

this belief. 

 

Suppose that ~ ( ,1)T N µ and we want to test H: 0µ =  against various alternative 

hypotheses.  For data 2t = , the results are as follows. 

 

i. Reject H: 0µ =  in favour of K1: 1
10µ =  at the 5% level. 

ii. Reject H: 0µ =  in favour of K2: 3µ =  at the 5% level. 

iii. Reject H: 0µ =  in favour of K3: 10µ =  at the 5% level. 

iv. Reject H: 0µ =  in favour of K4: 2010µ =  at the 5% level. 

v. Accept H: 0µ =  as opposed to K5: 1
4µ = −  at the 5% level (or any level less 

than 98%). 
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Clearly our observation, 2t = , favours 0µ =  over 1
4µ = − , but it favours 0µ =  over 

2010µ = even more strongly, so why do we accept H in the former case but reject it in 

the latter?  The formal answer, of course, is that all these inferences are consistent 

with maintaining a (long-run) Type I error rate of 5%.  However, the power and also 

(as discussed above) the bias between the two hypotheses, varies with K. 

 

In Neyman-Pearson theory, we reject H in favour of K if the likelihood ratio of the 

observed data is relatively small (in the sense that it is in the smallest α -proportion of 

values that we would observe, in the long-run, under H), rather than if it is actually 

small; for instance, we reject H if the likelihood ratio it is in the ‘smallest 5%’ of 

likelihood ratios produced under H.  When we change the alternative hypothesis but 

keep the null hypothesis the same, the likelihood ratio of each value of the test 

statistic also changes.  However, in a case like that above, as long as the value 

specified by K remains on the same side of the null value, the likelihood ratios remain 

in the same order.  That is, for any values of the test statistic, say 1t  and 2t , if  

 1 1 2 1( ; , ) ( ; , )H K H KLR t LR tµ µ µ µ<  

then 

 1 2 2 2( ; , ) ( ; , )H K H KLR t LR tµ µ µ µ< . 

 

Thus the critical value of the test statistic will remain the same although the critical 

value of the likelihood ratio will change, while still being the value on the boundary 

of the smallest 5%. 

 

If, in the above case we switch sides so that we test H: 0µ =  against a negative 

alternative, the order of the likelihood ratios (in terms of the test statistic) will be 

reversed so that 

 1 2

1 2

( ; , ) ( ; , )

( ; , ) ( ; , ).
H pos H pos

H neg H neg

LR t LR t

LR t LR t

µ µ µ µ

µ µ µ µ

<

⇔ >
 

 

The critical value of the test statistic will change because the values that were 

formally associated with small values of the likelihood ratio will now be associated 

with large values of the new likelihood ratio, and vice versa.  Thus the result of a test 
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(whether described in accept/reject terms for a fixed α  or given in the form of the p-

value of the data) is influenced by the precise details of K only insofar as this affects 

the order of the likelihood ratios (as a function of the test statistic) not insofar as it 

affects the value of the likelihood ratios.  This leads to some counter-intuitive results 

including the issue of bias discussed above. 

 

The swapped hypotheses problem. 

 

Another feature of conventional tests that casts doubt on any evidential interpretation 

is that the results from swapped hypotheses, in cases where the power is high, are 

contradictory.  Thus suppose we have a typical high power test, such as : 2H µ =  

versus K: 8µ = , based on ~ ( ,1)T N µ .  Then the 5% BCR for rejecting H (as null 

hypothesis) in favour of K overlaps with the 5% BCR for rejecting K (as null 

hypothesis) in favour of H. 

 

Figure 3.3 
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Interpreted in the typical evidential fashion, we would have to say that the data, 

5.5x = , represents both strong evidence against H relative to K and strong evidence 

against K relative to H.  This claim is not consistent with any reasonable conception 

of ‘evidence’.  Again, it is particularly disturbing that this occurs when the sample is 

large, since, in such cases, we are particularly confident of our results. 
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Weak evidence.   

 

It is widely recognised that a test may give misleading results (or be misinterpreted so 

as to be misleading) if the power is low.  Specifically, if the power of the test is low 

and the test result is not ‘significant’ (H is not rejected), then interpreting this as 

evidence in favour of H is inappropriate since the test is unlikely to reject H even 

when K is true.  This has lead to calls for the compulsory reporting of power in 

journal articles. For many standard tests, the power declines towards α  (which is 

small) as the hypothesised values converge and will thus be low whenever the values 

are sufficiently close together.   

 

In Example 3.1 the observed data was more consistent with H than K, but not very 

consistent with either hypothesis.  We can define as giving ‘weak evidence’ any data 

which is not much more consistent with one hypothesis than with the other, i.e. data 

which is not much help in deciding which hypothesis is true.  If a test statistic has the 

same support for all hypotheses (e.g. for all θ ∈Θ ), then, for any two hypotheses, 

there is some data that is weak, in this sense. 

 

When the two hypotheses are close together, and the power of any test with a 

conventional significance level is low, all the weakest data will fall outside the 

rejection region and, when observed, will cause us to ‘accept H’.  For example, if our 

test statistic is ( ,1)N µ , and we test H: 0µ =  versus K: 1
2µ =  at the 5% level, we will 

reject H if the test statistic is greater than 1.645, giving the test a power of about 13%.  

The data that is close to 1
4  (the point half way between 1µ  and 2µ ) provides only 

weak evidence about which hypothesis is true.  We could define as ‘weak’ all data in 

the range, say, 1
2[ ,1]− , and we note that this data always leads us to accept H, as 

shown below. 
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Figure 3.4 
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This problem may not be too serious if the analyst is conscious of the low power of 

the test and declines to read anything significant into the failure to reject H (although 

is this desirable if we observe 4t = − ?), but what about the case where the power is 

high? 

 

 

 

Example 3.2 

 

Below we show the densities relevant to the two hypotheses H: 0µ =  and K: 3µ =  

where 1σ = .  If we test these hypotheses at the 5% level, the cut-off value is again 

1.645 but now the power of the test is 91.23%.    Nevertheless it is clear that some 

data is not very helpful when it comes to choosing between H and K.  When the test 

statistic lies in the interval [1.0,2.0], it is hard to feel that we have much evidence of 

which hypothesis is true.  Some of the weak data in this interval lies in the acceptance 

region and some in the rejection region.  Yet the fact that both the error probabilities 

are low ( 5%, 8.78%α β= = ) would lead many people to regard the result of the test – 

accept H or reject H – with confidence; this confidence is unjustified when the data is 

weak and we can easily tell whether the data is weak just by examining it. 
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Figure 3.5 
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We can gain some insight into whether or not our intuition is correct by looking at the 

weak data in isolation.  Note that, by symmetry, the data is just as likely to be weak 

when H is true as when K is true.  We can calculate the error probabilities for this test 

given that the data is weak. 

 

Figure 3.6 
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Given that the data is weak, the probabilities of Type I error, Wα , and Type II error, 

Wβ , are: 

 
( 1.645 |1 2) 20.05%,

and ( 1.645 |1 2) 47.78%.
W H

W K

P T T
P T T

α
β

= > < < =

= < < < =
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These values are consistent with our intuition that when the data is in the region [1,2] 

we cannot infer much about which hypothesis is the true one.  It seems that making 

allowance for low power is not enough to prevent us from misinterpreting test results.  

The belief that we can place great confidence in a test result whenever α  and β  are 

both small, seems to imply that, in such a case, all data is bound to be highly 

informative, yet this is not true.  When the power is high, the usual interpretations of 

significant as well as non-significant results may be misleading. 

 

In the low-power example given earlier 1
2( 0 versus )µ µ= = , data in the rejection 

region does constitute genuine evidence against H relative to K.  As long as we refuse 

to be influenced by non-significant results (as is sometimes advised), we will not be 

misled (the weak data is all confined to the acceptance region).  However, even when 

the power is low, this is not always the case; in the following example the power is 

low but data in the rejection region cannot reasonably be interpreted as evidence 

against H. 

 

Example 3.3  

Suppose that the distribution of a random variable X  is dependent on a parameter, θ , 

through the model 

 1 1
2 2( ; ) 1 ,  ( , ),  ( 2, 2).f x x xθ θ θ= + ∈ − ∈ −  

 
The densities of X  under H: 0.2θ =  and K: 0.2θ = −  are shown below. 

Figure 3.7 
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The two distributions are very alike so that a single observation on X  is a poor basis 

on which to test these hypotheses; in this case all the data is weak.  The 5% (optimal) 

rejection region is ( 0.50, 0.44)− −  and the test has a power of 6.04% – extremely low, 

as we would expect.  The low power of the test indicates that we can read nothing into 

a failure to reject H.  However, comprehending this point will not necessarily prevent 

us from misinterpreting the data for, if 0.44x < − , we can reject H at the 5% level and 

yet such data in no way indicates a reasonable level of evidence against H relative to 

K.  Whenever the likelihood ratio statistic for a test is a continuous variable, it is 

possible to define a BCR associated with a low significance level.  This is true even 

when no data constitutes strong evidence against H relative to K.  In such a case, there 

is weak data in both the rejection and acceptance regions and neither result is reliable.  

This is true notwithstanding the fact that the test has a genuinely low significance 

level, indeed, this phenomenon can occur for arbitrarily small significance levels. 

 

 

3.2 Tests against a composite alternative hypothesis. 

One-sided tests. 

 

Tests involving a composite alternative hypothesis are the most commonly performed, 

freeing the scientist from the need to be precise about what effect size is of interest.  

In the heights example, we could have tested 163µ =  against the alternative 163µ >  

in order to determine whether the mean height had increased rather than trying to 

determine whether it had increased by a specific amount. 

 

Suppose again that ~ ( ,1)T N µ and we are testing H: 1µ µ=  against the one-sided 

alternative K: 1µ µ> .  We can consider the various components that go to make up K.  

Since all the components of K produce the same α -level rejection region when used 

as simple alternative hypotheses, the same region is used for an α -level test of H 

against the composite K.  The power of this test will vary depending on which 

component of K we look at and so we now treat it as a function of µ  ( Kµ ∈Θ ).  

Denote the power function by ( ) 1 ( )κ µ β µ= − .  The power will be low for alternative 
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values close to the null value, i.e. ( )κ µ α→  as 1µ µ→ , and higher for values further 

away, i.e. ( ) 1κ µ →  as 1| |µ µ− → ∞ .  Shown below is a plot of the power function 

for the test H: 0 versus K: 0µ µ= > when α  is 5%.  

Figure 3.8 
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This test is uniformly most powerful; nevertheless the power is obviously very low for 

some values of µ  (those close to the null value) so that accepting H is usually not 

regarded as evidence against these values.   

 

We noted in the previous section, that the traditional results (based on any data) make 

more sense for some components of K than for others.  When we observe the data 

2t = , we will reject H in favour of K at the 5% level.   When we think of zero versus 

the particular component one-tenth, the data is more consistent with the latter but 

surely not by very much (nothing like ‘beyond reasonable doubt’); zero versus two is 

where it is most convincing to reject H since (among other reasons) two is the 

maximum likelihood estimate of µ  from this data; for zero versus ten, the rejection 

seems wrong and even more so for more extreme alternatives.  We could describe the 

test as having different biases for the different components of K just as it has different 

power values.  For elements of K close to zero, the bias favours H, this bias weakens 

as the alternative gets further away from zero until it eventually turns into a bias in 

favour of the component of K – a bias which gets steadily stronger for larger and 

larger alternative values of µ .  We could therefore argue that, since the bias in favour 
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of K is strong for values of µ  far away from the null value, it is wrong to regard the 

rejection of H as evidence in favour of these values relative to the null value. 

 

If there was no bias in the tests of simple hypotheses, or if we insisted on having 

exactly the same bias for all tests, then the rejection regions would differ (over the 

components of K) and this would make testing a composite hypothesis far more 

complex.  Thus the fact that many different alternative hypotheses all give the same 

result is very convenient although it does not make a lot of sense. 

 

If we have doubts about the method or interpretation used in the testing of two simple 

hypotheses, these doubts must extend into the testing of a one-sided composite 

alternative.  Aside from this, there is a separate question about the way in which we 

convert tests of simple hypotheses to a test of a composite alternative.  Suppose we 

accept, for the moment, that the results of the simple hypothesis tests are appropriate, 

do we then approve of the mechanism for testing composite hypotheses, and if so, 

why?  With all the simple alternative hypotheses on the ‘same side’ of the null 

hypothesis yielding the same result, our rejection rule for testing a one-sided 

composite alternative is equally consistent with two very different approaches: 

 

a) We test 1µ µ=  against 2µ µ=  (at level α ), for each 2 Kµ ∈Θ , and if they all 

lead to the rejection of H, we reject H in favour of K at the appropriate level. 

 

b) We test 1µ µ=  against 2µ µ=  (at level α ), for each 2 Kµ ∈Θ , and if any one 

of them leads to the rejection of H, we reject H in favour of K at the 

appropriate level. 

 

For method (a), the rejection region for testing the composite hypothesis is the 

intersection of all the rejection regions for the individual tests, so the significance 

level will be some value α≤ .  For method (b), the rejection region is the union of all 

the rejection regions for the individual tests, so the significance level will be some 

value α≥ .  In the case of one-sided alternatives the individual rejection regions are 

all the same and the intersection is the same as the union and hence the significance 

level is α . 
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Of these two methods for dealing with composite hypotheses, the first is by far the 

more convincing; it is reasonable to suppose that we can lump together any options 

which all lead to the same conclusion.  For instance, if incomplete information about 

an unknown animal suggests that it is more likely to be any given species of reptile 

than to be a duck, then we can safely say that the evidence points to a reptile rather 

than a duck.  But if the evidence is more consistent with a crocodile than a duck and 

yet more consistent with a duck than with a blue-tongued lizard, we cannot make the 

same statement with any confidence.  Method (b) seems like a poor approach to 

testing composite hypotheses, a point that becomes relevant when we try to test two-

sided alternatives. 

  

 

Two-sided tests. 

 

The rejection region for testing H: 0µ =  against the two-sided alternative K: 0µ ≠ , is 

the union of the rejection regions for the tests:  

 

i. 0 versus 0µ µ= > , and 

ii. 0 versus 0µ µ= < . 

 

These in turn are each based on the (common) rejection region for simple alternatives 

discussed previously. 

 

For example, when testing a Normal mean, we may reject H in favour of K if 

1.645 or 1.645t t< − > .  The significance level is 10% rather than the 5% that would 

apply separately to the two one-sided tests.  The test is optimal in the sense that it is 

uniformly most powerful unbiased (and there is no uniformly most powerful test for 

this K).   

 

This approach is based on method (b).  It cannot be based on (a) because, for 

conventional α , no data which causes us to reject H in favour of a left-sided 
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alternative will also cause us to reject H in favour of a right-sided alternative, 

therefore the premise of (a) can never occur for a two-sided K.  The particular version 

of (b) used for two-sided tests is as follows: 

 

c) We test 0µ =  against 0µ >  and we test 0µ =  against 0µ <  (both at level 

/ 2α ) and if either one of them leads to the rejection of H, we reject H in 

favour of K at the α  level. 

 

This approach is counter to common sense, since, when we reject H, we always do so 

in favour of K ( 0µ ≠ ) rather than in favour of whichever component of K caused the 

rejection – information readily available.  (As always in Neyman-Pearson inference, 

the error probabilities are correct as statements of the long-run failure rates in repeated 

applications of the method; we dispute their evidential interpretation, not their design 

significance.) 

 

 

What can we infer from rejecting H in favour of a composite 
alternative? 

 

Despite these difficulties, tests of composite hypotheses might still be helpful as a first 

step towards investigating whether or not H is true, if rejecting H in favour of a 

composite K implies that the data is much more consistent with some component of K 

than with H (where H is still assumed to be a simple hypothesis), but is this true?   To 

answer this, we need to break K up into its component simple hypotheses, since it is 

only when we look at two simple hypotheses that we have a natural intuitive sense of 

what constitutes strong evidence.  If we reject H in favour of either a one-sided or 

two-sided K, then we would have rejected H in favour of any one of the values that lie 

to the right (left) of the null value, at either the α  or / 2α  level.  Because of the 

varying degrees of bias, this does not mean that the evidence supports all these values 

better than H; does it necessarily support any value more than H?  Suppose the 

parameter of interest is µ  where 2~ ( , )T N µ σ  and σ  is known.  The component of 

K that is most consistent with the data is that which corresponds to t , the observed 
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value of the test statistic (for instance the sample mean).  We reject H: 1µ µ=  in 

favour of (say) the right-sided8 composite alternative ( 1µ µ> ) if 1 1t z αµ σ−> + , in 

which case, we would also have rejected H in favour of K*: tµ =  at the same 

significance level.  Does this indicate that there is quite strong evidence that µ  equals 

t  rather than 1µ ?  Unfortunately not, since the test may be biased against H in favour 

of K*.  This will be the case whenever α β> , i.e. when 1 12t z αµ σ−> + , in which 

case we cannot read anything into the fact that we have rejected H in favour of K*.  

This is not to say that the evidence never strongly supports K* over H, merely that we 

cannot deduce this from the test result. 1 1 1 1When ( ) ( 2 )z t zα αµ σ µ σ− −+ < < + , the test 

rejects H even though it is not biased in favour of K*; if we had a way of measuring 

bias which would allow us to say (for instance) “We rejected H in favour of K* 

despite the fact that the test was strongly biased in favour of H”, we might choose to 

interpret this as evidence strongly favouring K* over H.  In the absence of such a 

measure all we can say is that an unbiased test would have favoured K* over H, which 

is to say that the data was more consistent with K*, but not necessarily by very much.  

In Chapter 7 we will consider using the likelihood ratio as a measure of evidence and 

find that, by that standard, the rejection of H in favour of a composite alternative does 

not necessarily imply that there exists any hypothesised value that is much more 

consistent with the data than is the null hypothesis. 

 

The results of orthodox ‘optimal’ hypothesis tests are usually interpreted as showing 

(for instance) that the set of data constitutes strong evidence against H relative to K.  

In this chapter we have shown that such evidential interpretations are not justified 

even when the power of the test is high.  We will next examine the topic of 

conditioning inference before returning to consider some alternative approaches to 

finding evidence. 

 

 

                                                 
8 Using a two-sided alternative would produce the same argument except with / 2α  in place of α . 


