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Chapter 4: Seminal moments in the history of the 
conditioning controversy. 
 

4.1 Introduction. 

 

Neyman and Pearson defined an optimal test by reference to its power and this was a 

major point of contention between them and Fisher (“I am a little sorry that you have 

been worrying yourself at all with that unnecessarily portentous approach to tests of 

significance represented by the Neyman and Pearson critical regions etc.”1).  The 

difference between the theories appeared to be largely philosophical since Fisher’s 

test statistics (maximum likelihood estimators) generally produced most powerful 

tests.  However, it eventually became apparent that, in cases where a Fisherian 

ancillary statistic exists, Fisher’s conditioning requirement results in an inference that 

is substantially different from that of Neyman.  In this chapter we look at three papers 

that have made a major contribution to the debate about conditioning.  The earliest of 

the three is that of Welch from 1939, only six years after the publication of the 

Neyman-Pearson theorem.  The other two papers were published twenty years later 

during the period 1958-1962.  Each of these works generated further literature on the 

topic and, together, they highlight all the most important features of the debate as well 

as motivating the development of the approach described in later chapters of this 

work. 

 

 

4.2 Welch (1939). 

 

In 1939 B. L. Welch published “On confidence limits and sufficiency, with particular 

reference to parameters of location”.  The paper aimed to critically compare the 

theory of Fisher with that of Neyman and Pearson.  One of the most important aspects 

of the paper is that it showed that the two approaches could produce very different 

                                                 
1 Fisher, quoted in Lehmann (1993), p. 1245. 
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results even when applied to a straightforward example.  The choice of example was 

an inspired one; it is very simple with only one parameter and a structure that is easy 

to understand.  Despite this simplicity, the data give rise to a statistic that is ancillary 

according to Fisher’s stringent definition.  The fact that the ancillary statistic is 

embedded in the data instead of standing out as, say, the first part of a two-stage 

sample is also informative since it shows that such phenomena are not always easy to 

recognise (however, once recognised, it is easy to interpret).  It was Fisher’s position 

that inferences should be carried out conditional upon the observed value of such an 

ancillary statistic whereas Neyman and Pearson’s approach aimed to maximise the 

overall power, and was thus unconditional. 

 

The Uniform example – Part I. 

 

This is the example used by Welch.  Our model is a random sample of size n  from a 

Uniform[ 1 1
2 2,θ θ− + ] population; 1, , nX X…  are independent and identically 

distributed with density: 

 
1 1
2 21,   [ , ]

( ; )
0,   otherwise.

x
f x

θ θ
θ

∈ − +⎧
= ⎨
⎩
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X  is equally likely to lie within any interval of a given length in [ 1 1
2 2,θ θ− + ]; such 

variables are sometimes described as lying ‘randomly’ in the interval.  The probability 

that X  lies outside [ 1 1
2 2,θ θ− + ] is zero.  We know the width of the interval in which 

X  must lie, it is one; we do not know where this interval lies on the real line.  We 

could use any point on the interval as the unknown parameter and have defined θ  to 

be the centre of the interval. 

 

The minimal sufficient statistic. 

 

For any 2n ≥ , the minimal sufficient statistic for θ ∈\  is given by the first and thn  

order statistics, (1) ( )( , )nX X ; that is, the largest and smallest values together contain all 

the information about θ ∈\  available in 1, , nX X… .  To see why this is so, observe 

that θ  must lie in the interval 1 1
( ) (1)2 2[ , ]nX X− +  since 1 1

(1) ( )2 2nX Xθ θ− < < < + .  

Once we know the left and right extremes of the data, knowing the positions between 

them occupied by other data-values does not add to our knowledge about θ .  Any 

one-to-one function of (1) ( )( , )nX X  is also a minimal sufficient statistic for θ ∈\ .   

 

The ancillary statistic, R. 

 

Define (1) ( )

2
nX X

M
+

= , the point half way between the two extreme order statistics 

(sometimes called the ‘midrange’ of the sample), and ( ) (1)nR X X= − , the sample 

‘range’.  Then ( , )M R  is a one-to-one function of (1) ( )( , )nX X  and hence a minimal 

sufficient statistic for θ ∈\ .  It is obvious that the behaviour of R  will not be 

influenced by the interval’s position on the real line, and it is easy to show that the 

distribution of R  is the same for all values of θ .  Since the likelihood of θ , ( ; )L x θ
�

, 

equals one for all 1 1
( ) (1)2 2( , )nx xθ ∈ − +  and zero elsewhere, any point on the interval 

1 1
( ) (1)2 2[ , ]nX X− +  qualifies as a maximum likelihood estimator of θ , including M , 

which is the only unbiased MLE.   Thus the statistic, R , satisfies Fisher’s definition 
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of an ancillary statistic and appears to be a good indicator of the reliability of M  as 

an estimator of θ  (in the same way that the random sample size N  was a good 

indicator of the reliability of X  as an estimator of µ  (see Chapter 2)). 

 

We will discuss a number of issues that arise when 2n = ; these phenomena also 

occur for general n , only the numerical details vary.  Instead of using the natural data 

1 2( , )x x x=
�

, we will use ( , )m r .  We can do this even when there are more than two 

data values since it is a sufficient statistic and using this form allows us to look at the 

ancillary statistic explicitly.   

 

Distributions – conditional & unconditional. 

 

The statistic ( , )M R  has a (joint) density dependent on the parameter θ .  Since it is a 

bivariate statistic, the density lies in three dimensions.  The values that m  can take are 

dependent on the value of r ; for any given value of r  in [0,1], m  can only take 

values in the interval 1
2[ (1 )]rθ ± −  as shown below. 

 

Figure 4.2 
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It is only when the two data points are on top of each other ( 0r = ) that the midrange, 

which is then equivalent to the two data points, can lie anywhere in the interval 
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1
2[ ]θ ± ; when the range is large, the two data points are (relatively) far apart in the 

interval, and the point half way between them ( m ) must be fairly close to the centre, 

θ .  When 1r = , the data points are one unit apart and must lie on the two bounds of 

the uniform distribution and m θ= .  Thus it is evident that the larger the range, the 

more information we have about θ .  This is also apparent from the fact that the 

interval 1 1
( ) (1)2 2[ , ]nX X− + , which we know must contain the value θ  (and is the 

shortest interval that must do so), can be written as 1
2[ (1 )]M R± −  and has a width of 

(1 )R− .   

 

When 2n = , the density of ( , )M R  is a (3 dimensional) uniform over the triangular 

support (shown above), with a height of two (shown below). 

 

Figure 4.3 
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Since this distribution is uniform, we can avoid the usual integrations when 

calculating probabilities; the probability that ( , )M R  will fall within any particular 

region within the triangular support is simply the area of that region as a proportion of 

the total area of the support, or equivalently (since the area of the support is one half), 

twice the area of the region.  For example, the region defined by: 

 (1 ) 1
2 2 2{( , ) : ( ) & (0 )}r rm r m rθ θ−Λ = − < < − < <  

corresponds to the bottom left triangle below. 
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Figure 4.4 
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This area is 25% of the total area of the support and thus (( , ) ) 0.25P M Rθ ∈Λ = . 

 

The marginal distribution of R  is independent of θ  and (for the case 2n = ) given by 

the density ( ) 2(1 ),   0 1f r r r= − < <  (from which we can show that the average range 

from a sample of two observations is 1/3). 

 

The conditional distribution of M  given that [0,1]R r= ∈  is also uniform, given by: 

 (1 ) (1 )
| 2 2

1( ) ,   ( ) ( )
(1 )

r r
M R rf m m

r
θ θ− −

= = − < < +
−

. 

 

For example, if 1θ = , then the conditional distribution of M  given that 0.2R =  is 

| 0.2 ( ) 1.25,   0.6 1.4M Rf m m= = < < , i.e. given that 0.2R = , ~ Uni(0.6,1.4)M . 

 

Neyman-Pearson theory uses the distribution of ( , )M R  to make an inference about 

θ , whereas Fisher’s theory uses the conditional distribution of M  given that R r=  

(the post-experiment observed value of the range) and thereby takes into account the 

reliability of M  for that particular value of R  (similar to conditioning on the random 

sample size N ).  

 

Welch’s paper did two things.  The first is technical; he showed, that the different 

principles behind the two theories lead to different results, so it is not the case that 

they are really the same principle differently stated.  This had not formerly been 
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apparent since standard tests had yielded the same numerical results from both 

approaches.  Secondly, having established, and illuminated, the differences between 

the methods, Welch attempted to argue that the approach of Neyman and Pearson is 

superior to that of Fisher.   

 

We will start by looking at the first issue.  (Welch wrote about a two-sided confidence 

interval whereas we will look at a one-sided hypothesis test in order to highlight the 

connections with later parts of this work.  All the interesting phenomena and 

arguments can be observed equally well in terms of either hypothesis tests or 

confidence intervals.)  

 

Two different approaches. 

 

Example 4.1 

 

Consider a test of two hypotheses H: 0.5θ =  versus K: 1.1θ = , where 1 2,X X  are 

independent and both have the uniform distribution on 1 1
2 2[ , ]θ θ− + .  We will 

translate the data from 1 2( , )x x  to ( , )m r .  Under both hypotheses, ( , )M R  is uniformly 

distributed, with a height of two.  The support of ( , )M R  depends on the hypothesis; 

both supports are shown below. 

 

Figure 4.5 
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The rejection region for a Neyman-Pearson test is an area in the ( , )m r -plane.  Welch 

showed that an optimal 5% test can be obtained using the following area. 

 

Figure 4.6 
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Figure 4.7 
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The shaded area above is the critical (rejection) region.  If the data produces a value of 

( , )m r  in this region, we will reject H in favour of K at the 5% level.  The top graph 

shows that the probability of this region, under H, is 5%.  (To check that this is true, 

note that each of the grid rectangles has an area of 0.025 units and is thus one 

twentieth of the total triangle area, and the small triangle labelled 5% has the same 

area as one of the rectangles.)  Of course, that part of the support under K that does 

not overlap with the support under H is also part of the rejection region but does not 
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contribute to the value of α  (5%) since it has a probability, under H, of zero.  The 

power of the test is the probability of the shaded region under K, and is obviously 

fairly high.  No other rejection region with a probability, under H, of 5% has a higher 

power than this one, so it is ‘optimal’ in the Neyman-Pearson sense. 

 

Now let us look at a Fisherian test.  Given that we observe data with a range of r , we 

will base our inference on the conditional distribution of M  given R r= .  For 

example, if 0.2R = , the conditional distribution of M  is Uniform on [ 0.4]θ ± .  The 

conditional distributions under H and K are shown below; the height of the densities 

is 1.25. 

Figure 4.8 
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The (conditional) 5% rejection region for m  is [0.86,1.50] (highlighted in the 

diagram above) since (0.86 1.50 | 0.2) (0.90 0.86) 1.25 5%HP M R< < = = − × = .  

Welch pointed out that this type of test is conditionally most powerful, in the sense 

that there is no other rejection region with a conditional significance level of 5% that 

has higher conditional power than this test (the conditional power is 

(0.86 1.50 | 0.2)KP M R< < = ). 

 

In order to make a valid comparison between the two approaches we need to look at 

how they work for different values of r .  Fisher’s approach requires us to consider 

only the conditional distribution associated with the value of R  that occurs in the 

experiment.  We can find a Fisherian rejection region in the ( , )m r -plane by 

combining the rejection regions (in m ) for all the different possible values of r .  
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When we do this we find that the conditional approach produces the following 

rejection region, which is substantially different from the Neyman-Pearson critical 

region. 

Figure 4.9 
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(If we were to draw a horizontal line across this plot at the point 0.2R = , we would 

hit the left side of the rejection area at the point 0.86m =  and the right side at the 

point 1.5m = .) 

 

 

That part of the rejection region in the support of ( , )M R  under H is highlighted 

below. 

Figure 4.10 
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Since, the probability (under H) associated with the conditional rejection region is 5% 

for each value of r , it is also 5% when averaged over all values of r  as indicated 

above.  Note that this rejection region (call it C  for ‘conditional’) has two 

characteristics: 

i. (( , ) ) 5%HP M R ∈ =C  

ii. (( , ) | ) 5%HP M R R r∈ = =C , for all r . 

 

The unconditional (Neyman-Pearson) rejection region (call it N ) satisfies (i) but does 

not satisfy (ii). 

 

Figure 4.11 
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In fact, since (see above) the height of the ‘5% rejection region triangle’ in the support 

of H is 1 20 0.224≈ , we can see that, for all 0.224r > , (( , ) | ) 0HP M R R r∈ = =N , 

and, by contrast, if r  is close to zero, (( , ) | )HP M R R r∈ =N  is close to 22.4% .  (All 

the triangles in this diagram have base = height.)  Thus, if our value of r  happens to 

be small (the two data points are very close together), we know that the (conditional) 

probability of Type I error associated with the optimal rejection region N  is more 

than 20%, even though the nominal level of the test is 5%. 
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A critical question ignored. 

 

At the heart of the issue is this question: is it the conditional properties (significance 

level, power) or the unconditional properties that really matter?  We cannot answer 

this question solely by reference to the theories of Neyman and Pearson or Fisher.  

From their theories we know their views, but their theories result from their views, 

they do not wholly explain or justify them.  The Neyman-Pearson theorem tells us 

how to find the test with highest unconditional power for a given unconditional 

significance level, but does not explain why this should be more important than the 

conditional power and significance level.  If the rival theories are no help, what can 

we look at?  We could look for a higher order principle that seems compelling and ask 

which of the two approaches is more consistent with it.  Alternatively, we could take a 

more pragmatic approach; for a given set of data and model, we could look at the 

different inferences produced by the two approaches and ask ourselves which 

inference seems to make more sense, intuitively, in the light of the data.  According to 

Jaynes, this approach is rarely adopted (“Let me make what, I fear, will seem to some 

a radical, shocking suggestion: the merits of any statistical method are not determined 

by the ideology which led to it”2). Welch’s paper is a prime example of this 

shortcoming; the uniform example could have been used to assess the performance of 

each method from a practical point of view; instead, he chose to assess them only by 

reference to the conflicting theories, or rather, by reference to one of the theories to 

which he was deeply attached.  Since both the competing tests have the same 

unconditional significance level, the theory of Neyman and Pearson states that they 

should be compared on the basis of their unconditional power and whichever one has 

the higher power is superior.  The Neyman-Pearson test is (of course) the one with the 

higher unconditional power.  Welch went to the trouble of showing this by calculating 

the power of the two tests even though he could have deduced the result directly from 

the Neyman-Pearson theorem.  On the basis of this, he concluded that the Neyman-

Pearson test is the better of the two tests.  His argument for using this particular 

criterion was simply that the unconditional power is “the real power”3 of the test. 

 

                                                 
2 Jaynes (1983), p. 154. 
3 Welch, p. 63. 
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The Uniform example – Part II. 

 

At the time, Welch’s paper was accepted on its own terms despite the defects in its 

approach.  Thus, Bartlett (1939) was concerned that Welch’s paper cast doubt on the 

value of ‘quasi-sufficiency’ (a concept related to ancillary statistics and conditional 

inference):   

 

Confining our attention, however, to problems which are primarily problems in 

one unknown only, we require to examine relations of the [conditional] type 

further, in view of some recent comments by Welch on the extent to which any 

conditional statistic … can claim to be sufficient4.   

 

Hotelling (1940) also thought the paper cast doubt on Fisher’s method:  

 

Criticisms of these applications of fiducial probability have been made by M. S. 

Bartlett [1936] and B. L. Welch [1939], and the field of applicability of such 

methods is still in need of elucidation5.   

 

Neyman, not surprisingly, also regarded the paper as lending support to his own 

methods:  

 

In this paper various general claims of Fisher are analysed, essentially from the 

point of view of [Neyman-Pearson] confidence intervals, and tested on 

appropriate examples.  Among other things it is found that the fears of 

inconsistencies in the theory of confidence intervals are unfounded6. 

 

However, twenty years later the attitude had changed as authors began to look more 

closely at the practical implications of having a conditional significance level that 

varies in a known way as r  varies, but is ignored.  In 1959, Lehmann had used the 

Uniform example in a discussion about sequential analysis.  Observing that a large 

                                                 
4 Bartlett, p. 391. 
5 Hotelling, p. 275. 
6 Neyman (1941), p. 129. 
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range provides more information about θ , he advocated a stopping rule that continues 

the sampling process until the range reaches a certain value. 

 

Consider, for example, observations from the uniform distribution over the 

interval 1 1
2 2( , )θ θ− +  and the problem of estimating θ . …[A] sample of size n  

can practically pinpoint θ  if the range is sufficiently close to 1, or it can give 

essentially no more information than a single observation if the range is close to 

0.  Again, the required sample size should be determined sequentially.7 

 

In his 1961 review of Lehmann’s book, Pratt argued that Lehmann had not grasped 

the wider implications of recognising that the amount of information available varies 

with r .  In the previous section we showed that, for larger values of r , the 

conditional significance level of the optimal Neyman-Pearson test is zero, it follows 

that an analogous confidence interval will contain all possible values of θ consistent 

with the data (i.e. the confidence interval will be 1
2[ (1 )]rθ ± − ).  For example, if 

1 20r > , the 90% confidence interval8 will contain all possible values of θ ; in fact 

it is quite possible for even a 50% confidence interval to contain all possible values of 

θ , and, at the other end of the spectrum, for (say) an 80% confidence interval to be 

the empty set.9 

 

Thus it appears that there are certainly occasions when inferences should be 

conditional, but optimal [i.e. Neyman-Pearson] decision procedures are not.  … a 

confidence interval may include all or no possible values of the parameter, so 

that the confidence level measures no one’s confidence … Satisfactory criteria 

have never been given for choosing a “good” inference procedure in the Neyman-

Pearson formulation.10 

 

                                                 
7 Lehmann (1959), p. 7. 
8 Throughout this work, the term ‘confidence interval’ (or CI), when unqualified, refers to the ‘optimal’ 
Neyman-Pearson (i.e. ‘uniformly most accurate’) confidence interval. 
9 See Pratt (1961) for more details. 
10 Pratt (1961), p. 166. 
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The same year, Fraser also criticised the Neyman-Pearson approach in the Uniform 

case.  Having observed that the Neyman-Pearson confidence interval is more  

‘accurate’11 than the Fisher interval, he continued: 

 

There is however another side to the comparison.  When the permissible range 

for θ  is small the [95%] confidence interval embraces not 95% but the full range 

of possible values for θ .  It is not hard to see what is happening: when the range 

of permissible values is short the confidence interval takes the full range on the 

grounds that in probability there may be another occasion when the range of 

permissible values is larger and less than 95% can be chosen and still maintain 

the long run 95% average.  Is the long run average more important than the 

specialized knowledge of the particular situation?  … My preference weighs 

heavily in favour of the fiducial [i.e. Fisher’s] interval for Welch’s example.12 

 

Pierce, in 1973, cited Welch’s Uniform example as a case where the optimal Neyman-

Pearson method gives results that are fundamentally misleading.  He thought that the 

use of fiducial methods only in cases where no optimal Neyman-Pearson method 

exists had obscured the fact that even Neyman-Pearson optimal methods have 

unfortunate conditional properties. 

 

By 1975, Robinson was referring to Welch’s example as “possibly the best known 

counterexample for Neyman’s version of confidence interval theory”13, and Keifer 

(1982)14 in the entry on ‘conditional inference’ in the Encyclopaedia of Statistical 

Sciences quoted Welch’s case as the paradigmatic example favouring conditioning. 

 

Welch’s example had undergone an amazing transformation from a case lending 

support to Neyman’s theory to evidence of a major flaw in it.  It had also helped to 

motivate a substantial modification of the theory (but for a description of the patchy 

acceptance, or even awareness, of this modification, see §5.4).  Why did this happen?  

Once practitioners started to look in detail at the results (for example, confidence 
                                                 
11 “Accuracy” in confidence intervals is analogous to power in hypothesis tests.  The confidence 
interval analogue to a most powerful unbiased test is a most accurate unbiased interval; the Neyman-
Pearson confidence interval in the Uniform case has this optimality property. 
12 Fraser (1961), p. 671. 
13 Robinson (1975), p. 155. 
14 Keifer (1982), p. 105. 
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intervals) generated from particular data by the optimal methods, their defects were to 

some degree obvious; Welch had failed to do this, instead concentrating on features of 

the process (like power), but the paper discussed in the following section contributed 

substantially to this change of heart. 

 

 

4.3 Cox (1958). 

 

1958 saw the publication of “Some problems connected with statistical inference” by 

D. R. Cox15.  In part of this paper, Cox revisited the issue of whether or not an 

inference should be carried out conditional upon the observed value of an ancillary 

statistic and came down firmly on the side of conditioning.  The compelling nature of 

this paper came in part from the use of a simple example using Normal distributions 

and a two-stage experimental process.   

 

Cox’s two-stage example. 

 

The parameter of interest is a population mean, µ . 

 

The first stage of the experiment utilises a device that produces one of two possible 

outcomes, each with a probability of ½ (the outcome of a toss of a fair coin, for 

instance).  Call this an observation of the random variable, A , where {1,2}a∈ . 

 

In the second stage we observe the value of a random variable, aX , where 

2~ ( , )a aX N µ σ  and:  

 
2
12
2
2

,   1

,   2.a

a

a

σ
σ

σ

⎧ =⎪= ⎨
=⎪⎩

 

Suppose also that 2
1σ  and 2

2σ  are known, distinct values.  Essentially this example is 

the same as that in which the sample size is randomly chosen and the sample mean is 

                                                 
15 Cox (1958). 
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used as the test statistic (or estimator) for making inferences about the population 

mean.  Here the sample size is fixed at one but the variance of X  is still dependent on 

the outcome of the first stage.  

 

If we were to condition on the value of A  (which of itself tells us nothing about µ ), 

we would simply perform the usual z-test or construct the usual z-interval based on 

the particular variance we ‘observed’.  Thus to perform a 5% test of H: 0µ =  against 

any right-sided alternative, we would use the rule Reject H if 1.645 ax σ> , substituting 

the appropriate value of aσ , based on the outcome of the first stage of the experiment, 

into this formula.  The argument for doing this is very compelling and Cox described 

the central issue as one of relevance.  If the result of stage 1 is that 1A =  and hence 

X  has a variance of 2
1σ , then, although it is true that X  might have had a variance of 

2
2σ  (had stage 1 produced a different result), it is simply not relevant.  We can make 

this scenario more concrete by thinking of it as a case where we are randomly 

assigned one of two different measuring devices or machines.  x  is the measurement 

made by our machine (for example, the weight of an object, where the true weight is 

µ ).  Both of the machines are unbiased, ( )aE X µ= , but neither of them is perfectly 

accurate.  One is less accurate than the other (possibly, much less) as indicated by the 

variance of aX , and we know exactly how accurate each machine is.  The central 

question is: given that we know which machine we have used, do we take into 

account only the accuracy of this machine when performing an inference on the 

experimental result, or do we allow ourselves to be influenced by the reliability of the 

other, unused, machine?   

 

Disconcertingly, it turns out that the optimal Neyman-Pearson result is influenced by 

the accuracy of the unused machine (or machines, if there is more than one) and also 

by the probability of getting each machine.  Cox showed that, when 1σ  is much 

greater than 2σ , the optimal 5% test of H: 0µ =  against any right-sided alternative 

hypothesis uses (approximately) the rejection rule: 
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Reject H if 

5 ,       2.
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Thus when 1A = , the conditional significance level 1 1( ( 1.28 ))HP X σ>  is close to 

10%, while when 2A = , it is close to zero.  The unconditional significance level is 

the average of these and is indeed 5%, since we were equally likely to observe 

1 or 2A = , but we have the same varying conditional significance levels that we 

noticed in the optimal test in Welch’s Uniform example.     

 

To confirm that this approach is, nevertheless, Neyman-Pearson optimal, we will look 

more closely at an example of this type and cite the exact values rather than 

approximates. 

 

Example 4.2 

 

Suppose aX  is Normally distributed and we want to test H: 0µ =  against K: 5µ = .  

The variance of aX  is either 2
1 4σ =  (probability 1

2 ) or 2
2 1σ =  (probability 1

2 ) 

depending on the outcome of a toss of a fair coin ( A ).  A test with conditional 

significance levels of 5% (for each a ) will Reject H whenever 1.64485 ax σ> .  Since 

the conditional significance levels ( 1α  and 2α ) of such a test are both equal to 5%, 

the overall (unconditional) significance level ( 1 1
1 22 2α α α= + ) is also 5%, so this is a 

‘5% test’ in the unconditional sense.  The conditional power values are 

( 1.64485 | )a K a aP X A aκ σ= > =  ( {1,2}a∈ ), which are 1 80.3765%κ =  and 

2 99.9603%κ = , hence the power of the test ( 1 1
1 22 2κ κ κ= + ) is 90.1684%.   

 

On the other hand, the most powerful 5% test uses the rejection rule Reject H 

whenever: 

 1

2

2.62906 1.31453 ,    1
2.53227 2.53227 ,   2.

a
x

a
σ
σ

= =⎧
> ⎨ = =⎩
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For this test 1 9.4334%α =  and 2 0.5666%α =  giving an overall significance level of 

5% as required.  The conditional power values are 1 88.2084%κ =  and 

2 99.3202%κ =  giving an overall power of 93.7643%; this is higher than the power of 

the conditional test for the same (unconditional) significance level and therefore 

superior from a Neyman-Pearson point of view.  These results are summarised below. 

 

Table 4.1 

Test Conditional Unconditional (NP)

1α (%)  5.0000  9.4334 

2α (%)  5.0000  0.5666 

α (%)  5.0000  5.0000 

1κ (%) 80.3765 88.2084 

2κ (%) 99.9603 99.3202 

κ (%) 90.1684 93.7643 

 

Were we to replicate this experiment infinitely many times (including the coin tossing 

part of the experiment), we would reject H 5% of the time when H is true using either 

test procedure, but, when K is true we would reject H 90.17% of the time, if we use 

the conditional test, but 93.76% of the time, if we use the optimal test. On the other 

hand, were we to replicate only the second stage of the test infinitely many times (for 

the observed value of a ), then, when 1a =  and H is true, we will reject H 5% of the 

time for the conditional test, but 9.43% of the time for the optimal test, and when 

2a =  and K is true, we will reject H 99.96% of the time for the conditional test but 

99.32% of the time for the optimal test.  

 

Welch and Cox hold exactly opposite positions on the central question: for Welch the 

overall power is the real power precisely because, although we happened to observe 

1A = , we might have observed 2A =  and it would be wrong for us to ignore this; for 

Cox, once we have observed 1A = , the fact that we might have observed 2A =  

becomes a complete irrelevance – we might have observed it, but we did not.  (We 

find an echo of Welch, even today, in Mayo’s frequent critical references to Bayesians 
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using features of the data that “just happened to occur”16.)  Since the optimal test has 

higher power over the unconditional sample space than the conditional approach, it 

follows that we must choose between the pursuit of relevance and the pursuit of 

(unconditional) power.  In a passage that became famous, Cox identified the 

fundamental difference between the two approaches: 

 

Now if the object of the analysis is to make statements by a rule with certain 

specified long-run properties [e.g. significance level, power], the unconditional 

test just given is in order, although it may be doubted whether the specification 

of desired properties is in this case very sensible.  If, however, our object is to say 

‘what we can learn from the data that we have’, the unconditional test is surely 

no good.17 

 

Ancillary statistics and notional two-stage experiments. 

 

The two-stage structure of this example means that it is easy to identify the ancillary 

statistic and probably also makes it easier for us to decide which parts of the sample 

space are relevant and which not.  It is possible to think of all experimental designs 

that produce ancillary statistics as having a ‘built-in’ two-stage structure.   

 

Data, v , may be the product of a single stage experiment, but, if it has the structure 

( , )v a x=  where a  is ancillary, then we can think of it as follows.  Conceive of 

another experiment that involves two stages where the first randomly generates a  

from a distribution, Af  (independent of the parameter of interest) and the second 

generates x from ( ; , )Xf a θ⋅  (which depends upon both a  and θ ).  All the features 

produced by this experiment, and considered relevant for any version of inference 

(sample space, probability mass functions for different θ  etc.) are the same as those 

produced by the initial experiment yielding v  directly.  For example, in the Welch 

case ( 2)n = , the distribution of ( , )M R  is equally consistent with either of the 

following scenarios: 

                                                 
16 Mayo, p. 350, for example. 
17 Cox (1958), pp. 360, 361. 
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i. Sampling r  from the ‘triangular’ population ( ( ) 2(1 )Rf r r= − ) and then 

sampling m  from the Uniform (1 )
2( )rθ −± , or 

ii. Sampling 1 2and x x  from the Uniform 1
2( )θ ± and then calculating  and m r  

from them.   

 

Should we make our inferences the same way in either case?    It is difficult to argue 

that the physical features of the experiment should be allowed to dictate the form of 

the analysis even when they do not affect the mathematical structure; such an 

approach would require a new extra-mathematical theory.  Unless you are prepared to 

contemplate this possibility, your position on the two-stage case will need to carry 

over to differently structured experiments with ancillary statistics embedded in the 

observations18.  

 

Cox’s paper affected attitudes towards the Welch example, which he cited, without 

going into details, as a similar example to his own.  After 1958, almost19 all the 

references to the Uniform example cite it in criticism of unconditional Neyman-

Pearson inference.  In the same paper in which he discussed the Welch example, 

Fraser wrote “… fiducial [conditional] probability gives an answer to the question D. 

R. Cox in his 1958 paper felt that statistical inference should answer: ‘What do the 

data tell us about θ ?’”20.  An interesting question, that we will not attempt to answer, 

is why it was that Cox was so much more successful in arguing the case for 

conditioning than Fisher had been.  Perhaps it was simply that Fisher, who had 

contempt for Neyman-Pearson theory, never bothered to apply his argument to such a 

clear-cut case; his notoriously difficult personality may also have been a factor. 

 

 

                                                 
18 An argument analogous to the above is sometimes given to justify the sufficiency principle by 
observing that any data can be thought of as the product of a two-stage experiment in which the first 
stage yields the value of a sufficient statistic, s , (distribution dependent on θ ) and the second stage 
yields the ‘rest’ of the information from a distribution ( |X S s= ) independent of θ ; since the second 
stage contains no information about θ , we can make our inference based solely on the outcome of the 
first stage or, in general, based solely on the value (and distribution) of a sufficient statistic. 
 
19 See Chapter 5 for a prominent exception. 
20 Fraser (1961), p. 670. 
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4.4 Birnbaum (1962). 

 

Three Principles. 

 

Recall the two principles defined in Chapter 2. 

The Sufficiency Principle (SP): 
For θ ∈Θ , suppose an experiment results in data x∈

�
X and 1 2( ) ( )s x s x=

� �
, where 

( )s X
�

 is sufficient for θ ∈Θ , then our inference about θ ∈Θ  from 1x
�

 should be the 

same as that from 2x
�

. 

This principle can be seen as asserting the irrelevance of observations not part of a 

sufficient statistic. 

 

The Likelihood Principle (LP): 
For θ ∈Θ , suppose an experiment, 1E , can result in data, x∈X, with likelihood 

1( ; )L x θ
�

, and an experiment, 2E , can result in data, y∈Y, with likelihood 2 ( ; )L y θ
�

.  

If, for some 0x
�

 and 0y
�

, it is the case that 1 0 2 0( ; ) ( ; )   L x k L yθ θ θ= × ∀ ∈Θ
� �

 (where k  

is independent of θ ), then our inference about θ ∈Θ  from 0x
�

 should be the same as 

that from 0y
�

. 

This principle can be seen as asserting the irrelevance of outcomes not actually 

observed. 

 

Obviously (see Chapter 2), the LP entails the SP, which is simply a version of the LP 

with scope limited to a single experiment.  We have also shown that Neyman-Pearson 

inference satisfies the SP (if we disallow randomising variables) but not the LP, which 

is breached as a result of the way in which tail areas are used to make inferences. 
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The unrestricted conditional principle. 

 

Now consider a third principle, which we will call the conditional principle21 (CP).  

This principle encapsulates the following view.  If (to put it in concrete terms) we are 

allocated a certain ‘machine’ for performing our experiment, then the nature and 

probabilities of any other machines that might have been used, but were not, should 

not affect the inference we make from the outcome of our experiment, as long as 

those probabilities where independent of the value of θ .  Equivalently, it can be 

described as asserting the irrelevance of (component) experiments not actually 

performed. 

 

The Conditionality Principle (CP): 
For θ ∈Θ , suppose that in some experiment, 1E , we observe the value of a random 

variable 1X ∈
�

X1 with likelihood (density) 1 1( ; )L x θ
�

and in another experiment, 2E , we 

observe the value of a random variable 2X ∈
�

X2 with likelihood 2 2( ; )L x θ
�

.  Suppose 

also that we observe the value of a random variable {1, 2}A∈  where 

1
2( 1) ( 2)P A P A= = = = , independent of 1 2,  or X Xθ

� �
.  Consider the two-stage 

experiment, *E , where we first observe the value of a  and then carry out 1E  if 1a =  

or 2E  if 2a = , hence we observe the value of ( , )AA X
�

.  Then, a∀ , we should infer 

the same about θ ∈Θ  from ( , )aa x
�

 (derived from *E ) as from ax
�

 (derived from aE ). 

 

This principle is consistent with Cox’s view (and Fisher’s) regarding the issue of 

relevance not adequately addressed by optimal Neyman-Pearson theory (or the 

concept of sufficiency), although Cox (like Fisher) advocated a principle that is 

weaker than that stated above, in order to be able to remain within the frequentist 

framework. (Arguments for different conditionality principles will be discussed in 

Chapter 5.)  Note that repeated applications of the above principle will cover cases 

where the ancillary statistic, A , takes more than two values and is not necessarily 

uniformly distributed.  Also note that none of these principles specify what our 

                                                 
21 The term ‘conditional principle’, unqualified, always refers to this principle, which might also be 
called ‘unrestricted’ in contrast to the ‘restricted CP’ defined in Chapter 5. 
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inferences should be; they only specify that certain perceived irrelevancies not be 

allowed to influence the interpretation of the data. 

 

Of these three principles, the SP is accepted within a wide range of different statistical 

theories; in a frequentist context it is due to Fisher, but the fact that Neyman-Pearson 

inference can be made consistent with it (despite being ultimately based on error 

probabilities) has probably reinforced its status.   

 

The LP is consistent with Bayesian inference and it is possible to make non-Bayesian 

inferences that are also consistent with it, but all forms of frequentist theory are at 

odds with it and some of its implications (such as the irrelevance of the stopping rule) 

are regarded with distaste by many frequentists. 

 

As we have seen, the CP (or the concept behind it) was first advocated by Fisher but 

dismissed by Neyman and Pearson, however, after Cox’s paper and the later 

commentaries on Welch’s example, it came into some favour among frequentists 

generally. 

 

In 1962, A. Birnbaum presented to an eminent audience a long and intricate paper 

entitled “On the foundations of statistical inference”.  Birnbaum was “unusual among 

statisticians in that he actively sought contact with philosophers as well as with 

methodologists in various sciences”22.  He was a frequentist, who supported the 

control of error probabilities but believed that frequentist inference needed to have a 

valid evidential interpretation to be useful in science; he described his paper as being 

about “informative inference” and “experimental evidence”23.  In it he proved the 

theorem that bears his name and makes an astounding claim, namely, that the SP and 

CP together entail the LP (and vice versa) so that the LP is logically equivalent to the 

conjunction of the SP and CP; hence, that “two principles widely held by non-

Bayesian statisticians … jointly imply an important consequence of Bayesian 

statistics”.24   

 

                                                 
22 Giere, p. 5. 
23 Birnbaum (1962), p. 269. 
24 Giere, p. 6. 
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 Birnbaum's theorem: SP & CP LP.⇔  

 

It follows from this that anyone wishing to uphold both the SP and the CP must also 

uphold the LP, which, in turn, bars the use of frequentist methodologies. 

 

Reactions to Birnbaum’s theorem. 

 

Birnbaum’s theorem has provoked very strong reactions from the day it was first 

presented.  The following responses are from its initial audience. 

 

L. J. Savage. 

… it seems to me that this is really a historic occasion.  This paper is a landmark 

in statistics because it seems to me improbable that many people will be able to 

read this paper or to have heard it tonight without coming away with 

considerable respect for the likelihood principle.  … not to take the principle 

seriously no longer seems possible … I, myself, came to take … Bayesian 

statistics … seriously only through recognition of the likelihood principle …25  

 

Jerome Cornfield. 

… I haven’t quite recovered from the shock of seeing that two principles I had 

thought reasonable and one which I had thought doubtful imply each other.  It is 

clear that I must either believe all three or disbelieve at least one of the two 

reasonable ones.  What is not clear is on what basis this choice should be made. 

One basis for this choice is provided by consideration of a consequence of the 

likelihood principle – the irrelevance of the stopping rule26.  

 

Irwin Bross. 

[After calling the previous speakers “a mutual admiration society of Bayesians”] 

… the scientific value of this recommendation is dubious … if this 

recommendation is examined from a practical standpoint, it is very bad advice.  

It would probably be very little short of disastrous to a scientist who followed it 
                                                 
25 Savage, L. J. in Birnbaum (1962) discussion, p. 307. 
26 Cornfield, J. in Birnbaum (1962) discussion, p. 309. 
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… Finally I would like to point out that the basic themes of this paper were well-

known to Fisher, Neyman, Egon Pearson and others, well back in the 1920’s.  

But these men realised, as the author doesn’t, that the concepts cannot be used 

directly for scientific reporting.  So, they went on to develop confidence intervals 

in the 1930’s, and these proved to be very useful.  The author here proposes to 

push the clock back 45 years, but at least this puts him ahead of the Bayesians, 

who would like to turn the clock back 150 years27.      

 

George E. P. Box. 

[Taking issue with Bross]  

… although I pride myself on being a practical person … it would be very 

difficult to persuade an intelligent physicist that current statistical practice was 

sensible, but there would be much less difficulty with an approach via likelihood 

and Bayes’ theorem28.    

 

Most of the responses reflected the ideological positions of their makers.  Even those 

who were less dogmatic recognised that Birnbaum’s theorem has very great 

implications and presents frequentist adherents of the CP with a real dilemma; the first 

edition of Kendall & Stuart to come out after Birnbaum’s paper contains the following 

comment: 

 

However the real question is whether we should [use the CP] …  This question 

has far-reaching implications, since A. Birnbaum (1962) has shown that the 

Conditionality Principle implies (as well as being obviously implied by) the 

Likelihood Principle, which states that only the LF [likelihood function at x ] 

need be regarded in making any statistical inference from observations.  In 

particular, this has the consequence that the details of the sampling procedure 

which produced the observations (and the LF) are strictly irrelevant to 

subsequent statistical inference.  Many, perhaps most, statisticians will find it 

intuitively unacceptable to eliminate the sample space from consideration in 

                                                 
27 Bross, I. in Birnbaum (1962) discussion, p. 309, 310. 
28 Box, G. E. P. in Birnbaum (1962) discussion, p. 311. 
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making inferences from observations.  If so, they must reject the Likelihood 

Principle, and the Conditionality Principle must automatically go with it29. 

 

Despite this ambivalence, Birnbaum’s theorem has probably caused a number of 

people to reconsider the LP because of its equivalence to two such respectable 

axioms; E. T. Jaynes described the theorem as “The first proof of the ‘likelihood 

principle’ to be accepted by anti-Bayesians.”30  

 

“On the foundations of statistical inference” is a long paper; Birnbaum discusses 

many interesting points in addition to presenting the famous theorem.  One of these 

points is that, for certain binary parameter spaces for the Bernoulli parameter, p , 

there exists an ancillary variable, with the result that the long-standing inferential 

methods used in this case are in breach of the conditionality principle.  This example 

will be considered in detail in the following chapter. 

 

 

 

                                                 
29 Stuart & Kendall (1967), p. 217. 
30 Jaynes (2003), p. 684. 


