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Chapter 7: An alternative measure of evidence. 
 

In Neyman-Pearson hypothesis testing, the error probabilities are primary.  The 

probability of Type I error (significance level) is fixed in advance of the experiment 

and determines the critical likelihood ratio (CLR).  If a unique, optimal NP test exists 

for testing two simple hypotheses, it will have higher power than any other test with 

the same significance level.  We can often design a test so that both error probabilities 

are low by choosing an appropriate sample size.  There is no doubt that the error 

probabilities are an important feature of experimental design, however, NP inference 

goes much further by making them the basis of the inference.  Although the most 

powerful test is based on the likelihood ratio statistic (which is the minimal sufficient 

statistic for a binary parameter space), the critical likelihood ratio is determined by α .  

If, on the other hand, the LR were primary, α  would be determined by the choice of 

CLR.  This distinction is important because a result due to Robbins (see below) shows 

that, while a low CLR guarantees a low α , the converse is not true; we have already 

cited a case (Example 3.1) where α  is conventionally low and yet the CLR is high, 

with the result that we reject H when the data is far more consistent with H than with 

K.  Thus, low error probabilities, alone, are not an adequate criterion for a good test; 

the test result must tell us about something that we are interested in, only then is the 

fact that it will be correct a high proportion of the time of value.   

 

Cox distinguished1 between “making statements by a rule with certain specified long-

run properties” and finding out “what we can learn from the data that we have”.  The 

former describes an approach that only has good error probabilities, i.e. where the 

‘statements’ have been designed with the sole purpose of producing low error 

probabilities and have no other intrinsic quality.  Yet, when introductory textbooks 

focus on examples where the data does comprise strong evidence against H as well as 

having a low p-value, they create a perception that these things are the same, and the 

widespread use of composite hypotheses further muddies the water since our ability to 

intuitively assess the evidence is lost – evidence against H relative to what? 

 

                                                 
1 Cox (1958), pp. 360, 361. 
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In this work, we are interested in evidential inference and, specifically, in finding a 

good answer to the question ‘Does the data constitute strong evidence against H 

relative to K?’  This is one reason why we discuss most issues in the context of a 

comparison of two simple hypotheses.  It can be objected that this is not a particularly 

realistic scenario: many tests that are carried out for practical purposes involve one or 

more composite hypotheses; for example, 0µ =  versus 0µ > .  Since many of the 

problems with conventional inference are most easily observed in the case of two 

simple hypotheses, it may be tempting to believe that the scope of these problems is 

similarly limited; however this leaves some important questions unanswered.  Is it 

claimed that a methodology that does not work (with respect to assessing evidence) in 

the case of two simple hypotheses nevertheless does work when we use composite 

hypotheses? Why should this be so, and how could it be proved?  How do we interpret 

a composite hypothesis?  Does 0µ >  mean the same as the disjunction of { }rµ =  

over all r +∈\ , and, if so, why would we expect there to be a single meaningful 

answer to a large number of varied questions, or accept an approach that can be 

shown not to work for certain simple components of the composite?  If, on the other 

hand, 0µ >  does not amount to a disjunction of many statements, what exactly does 

it mean, and how can we hope to interpret the result evidentially (or in any other way) 

when we do not know what issue we are investigating?  Without clear answers to 

these questions it is impossible to make the case that standard methodology works for 

this scenario.  It is plausible that the problems with standard methodology are simply 

obscured (rather than absent) in the composite-hypothesis context because of the 

greater complexity and vagueness in such a case; these features make it almost 

impossible to answer the question ‘Does the conventional inference make sense here?’  

Being unable to answer this question, or even understand its meaning, does not 

amount to answering it in the affirmative.   
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7.1 Using the likelihood ratio as a measure of evidence. 

 

The Neyman-Pearson theorem shows that a critical region based on the likelihood 

ratio statistic produces the most powerful test (where such a thing exists); this critical 

region contains all the data with a relatively small likelihood ratio.  It is widely 

believed that a small p-value or (equivalently) the rejection of H at a low significance 

level signifies data that constitutes strong evidence against H (see Efron quotation in 

Chapter 2).  An alternative view is that the likelihood ratio value measures the 

evidence in absolute terms (a position adopted most recently by Royall).   

 

In the later chapters of this work we will extend the manner and scope of conditioning 

within the frequentist framework. In this chapter we argue that the likelihood ratio is a 

good non-frequentist measure of the evidence favouring one (simple) hypothesis 

relative to another, and show how it is used.  This will provide us with a concrete 

measure with which to compare the results of conditional inferences developed in the 

following chapters, though we will also, at times, assess them directly by common-

sense reference to the null and alternative distributions, as we did with conventional 

inferences in Chapters 3 & 6.  

The quantitative law of likelihood. 

 

Under this interpretation, a given value of the likelihood ratio corresponds to a given 

level of evidence for H relative to K.  This association between the likelihood ratio 

and the level of evidence does not depend on the model2 or other context of the 

problem as it does in frequentist inference; in frequentist inference, the same critical 

likelihood ratio is associated with widely varying α -values, significant in some cases 

but not others, depending on the model and hypotheses. Royall’s Quantitative Law of 

Likelihood describes the connection between likelihood ratio and evidence, as 

follows. 

 

                                                 
2 Except in so far as the model affects the value of the likelihood ratio itself through the two likelihood 
values. 
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The Quantitative Law of Likelihood3 (QLL): 

 

If hypothesis H implies that the likelihood of a random variable X  at x  is 

( )HL x , while hypothesis K implies that the likelihood is ( )KL x , then the 

observation X x=  is evidence supporting H over K if and only if ( ) ( )H KL x L x>  

[i.e. LR>1], and the likelihood ratio, ( ) / ( )H KL x L x , measures the strength of that 

evidence. 

 

This is a quantitative extension of the Law of Likelihood (LL), defined by Hacking4: 

 

d  [data] supports h  better than i  whenever the likelihood ratio of h  to i  given 

d  exceeds 1. 

 

(Hacking’s one-way implication (‘whenever’) is usually replaced by the two-way ‘if 

and only if’, which Royall also employs. 5) 

 

Before we look at basing inferences on the QLL, we need to consider some criticisms 

of the LL.  Fitelson (2007) describes a number of cases that seem to be counter-

examples to the LL (and thus also to the QLL).  Some depend on allocating certain 

priors to the hypotheses “so, it seems to me that Likelihoodists needn’t be swayed by 

such examples”6, but another is rather more serious.  It is possible to identify cases 

where the likelihood ratio of the data is more than one despite the fact that the data 

entails K but not H7; in such circumstances, it seems unreasonable to interpret the data 

as support for H over K, as the LL requires.  However, this does not pose a problem 

for the application of the LL (or QLL) in this work, for the following reason.  As will 

be seen in Chapters 8 and 9, the methodology we develop involves only binary 

parameter spaces within which the two (simple) hypotheses are logical opposites, i.e. 

in all cases, ~K H≡ .  It is easy to show that, under these circumstances, Fitelson’s 

                                                 
3 Royall, p. 3. 
4 Hacking, p. 71. 
5 See, for instance Fitelson, p. 3. 
6 Fitelson, p. 5. 
7 Fitelson, p.5.   
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paradoxical cases cannot arise (since the likelihood ratio must be zero if the data 

entails K).  Fitelson also shows that, under our circumstances (i.e. where ~K H≡ ) 

the LL is consistent with “any Bayesian relevance measure of degree of non-relational 

confirmation.”8  Thus, (in our case) the reader is free to accept the LL criterion for 

any one of a number of different reasons.  The QLL says that the likelihood ratio 

measures the degree to which H  is favoured over K , but this measure is also, in our 

case, equivalent to a number of others; for instance, ( ) 1LR E r= >  if and only if 
( , ) 2
( , ) 1l H E

l K E r= >  (where ( *, )l H E  is the Bayesian relevance measure of degree of non-

relational confirmation defined by ( | *)
( |~ *)( *, ) P E H

P E Hl H E ≡ , see Fitelson, p. 7).  In short, it 

is not necessary to accept that the QLL criterion is appropriate in all circumstances, in 

order to accept its use in the context of this work. 

 

Features of the likelihood ratio as a measure of evidence. 

 

Any inference method based solely on the likelihood ratio as a measure of evidence, 

in accordance with the QLL, has the following features: 

 

a) The method satisfies the likelihood principle (LP) and, hence, the CP (both 

restricted and unrestricted) and the SP. 

b) The inference will be the same for the same observations produced by 

different stopping rules (as long as they produce the same LR). 

c) The inference will tend to be very sensitive to the exact specification of both 

hypotheses – not just the ‘null’ hypothesis. 

d) It will not be possible to test a composite hypothesis other than in very 

exceptional circumstances; for instance we can only test simple H against 

composite K using data x
�

 if ( ) ( ) ( )
iH KLR x L x L x=

� � �
 is the same  KiK∀ ∈ . 

Note also that, by symmetry, a LR of one corresponds to data that is neutral regarding 

the two hypotheses. 

 

                                                 
8 Fitelson, p. 11. 
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7.2 Royall’s canonical experiment.9 

 

If the likelihood ratio measures the evidence in favour of H relative to K, with one 

corresponding to neutrality, when is the value large enough or small enough to 

constitute strong or significant evidence in favour of one or other hypothesis?  There 

is no probabilistic interpretation of the LR since it lies in the interval (0, )∞ rather than 

(0,1) .  The best way to establish the meaning of the value is to look at a simple 

example and consider how strong the evidence needs to be before we regard it as 

significant.  In order to do this, we need to stipulate prior probabilities, on our two 

hypotheses, of ½ and ½ so that our judgement is due to the data only, not to any initial 

preference between the hypotheses.  

Suppose we have a coin before us and are interested in two hypotheses regarding 

P( )p head= , namely: 

 
1
2H: the coin is fair, i.e. 

K: the coin is double headed, i.e. 1.
p

p
=

=
 

 

To establish the appropriate priors, suppose that we possess two coins one of which is 

indeed fair and the other double-headed and that one of these two coins has been 

randomly selected, with a probability of one half, and placed before us.  This prevents 

us from being influenced by the view that K is intrinsically less plausible than H. 

Clearly, we can dismiss K as soon as we obtain even one tail, but let us consider the 

case where all tosses of the coin result in a head; how many heads do we need to 

throw in order to feel that we have significant evidence that the coin is double-headed 

rather than fair?  The likelihood ratios of H relative to K of some possible outcomes 

are shown below.  

 

Table 7.1 

Outcomes h hh hhh hhhh hhhhh hhhhhh hhhhhhh

Likelihood ratio 1
2  1

4  1
8  1

16  1
32  1

64  1
128  

                                                 
9 Royall, p. 11. 
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If you feel that tossing the coin three times and getting a head on each occasion 

constitutes significant evidence that the coin is double-headed rather than fair, then 

you regard a likelihood ratio of 1
8  or of 8 as being ‘significant’.  If two heads out of 

two tosses leaves you very doubtful, then you do not regard a likelihood ratio of 1
4  (or 

4) as significant.  Royall takes the view that a likelihood ratio of 8 is “fairly strong 

evidence” and a likelihood ratio of 32, corresponding to five heads out of five tosses, 

is “quite strong evidence”.10  (My own intuition is that 3 heads is not significant 

evidence.)   In any given case, the strength of evidence represented by the likelihood 

ratio of the observed data can be judged by reference to this simple example; for 

instance, if your data, x
�

, has a likelihood ratio of 500 (or 1/500), the evidence favours 

one of your hypotheses nearly as strongly as nine heads out of nine tosses favours K, 

while, if your data has a likelihood ratio of 1/6.8 (a figure that arises in testing 

hypotheses about the mean of a Normal variate), the evidence is not as strong as that 

from the outcome hhh. 

 

7.3 Basing a dichotomous inference on the likelihood ratio. 
 

The likelihood ratio is a continuous measure and there is no need to use it only in a 

yes-or-no format.  However, in the interest of comparing it with standard hypothesis 

testing techniques we will consider the case where we want to specify a critical 

likelihood ratio (CLR) and use it as the basis for accepting H as opposed to K (when 

( )LR x >
�

CLR) or rejecting H in favour of K (when ( )LR x ≤
�

CLR).  Since we are 

principally interested in rejecting H when there is strong evidence against H relative 

to K, we will use a CLR of 1
λ  where 1λ � .  The two error probabilities of the test, 

( )α λ  and ( )β λ , depend on λ ; by the Neyman-Pearson theorem, the power 

( ) 1 ( )κ λ β λ= −  will be the highest that can be produced by any dichotomous test of 

level ( )α λ , since the test is based on the likelihood ratio statistic.   

 

                                                 
10 Royall, p. 26. 
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Bias. 
 

We saw in Chapter 3 that trying to control the bias between the hypotheses can lead 

us towards a LR-based inferential rule.  The bias (between the two hypotheses) is 

readily identifiable, for any dichotomous rule, from the CLR itself.  (This is also true 

in frequentist inference; but in that case the actual value of the CLR is almost never 

calculated.  The cut-off value used in the test is the critical value for the natural 

statistic – not the critical value of the likelihood ratio statistic.  Also, when either of 

the hypotheses is composite, there is no single CLR; the CLR of the test varies 

depending on which component of the composite hypothesis we consider.)  The rule 

will be unbiased only if the CLR is one; we can construct a test that is biased in 

favour of H and only rejects H when there is strong evidence in favour of K (relative 

to H) by making the CLR sufficiently far below one, for example by rejecting H only 

when 1
32( )LR x ≤

�
; any test where the CLR>1 is biased in favour of K and the larger 

the CLR, the stronger the bias. 

 

Contrasts and criticisms of frequentist inference via the likelihood 
ratio measure of evidence. 
 

How significant is statistical significance? 
 

Despite the prominent place give to the likelihood ratio statistic in the Neyman-

Pearson theorem, there is an immense difference between methods such as that of 

Royall (or any method consistent with the LP) and that of Neyman & Pearson or the 

Fisher-Neyman-Pearson hybrids.  This is because, in the likelihood methods, the 

likelihood ratio is interpreted in absolute rather than relative terms.  The Neyman-

Pearson theorem justifies rejecting H in favour of K when the likelihood ratio is less 

than a constant k , which is chosen so that (under H) most of the likelihood ratios 

observed from repetitions of the experiment will be larger than k ; however this does 

not amount to rejecting H whenever the likelihood ratio is small because k  may not 

be small.  By contrast Royall’s interpretation of the likelihood ratio is constant.  A 

likelihood ratio of 1
2  constitutes very weak evidence against H relative to K and this is 
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just as true for experiments that produce likelihood ratios in the range 1
2[ ,3] , so that 1

2  

is the strongest evidence against H that can ever be observed, as for those where the 

likelihood ratio lies in 1
1000[ ,3] , so that much stronger evidence against H is 

observable.   

 

Under Royall’s paradigm, a given LR is interpreted the same way in all contexts11, 

and only likelihood ratios less than one are regarded as evidence against H (relative to 

K) to any degree whatsoever.  By contrast, in frequentist inference, there is no general 

connection between the CLR and α , or between ( )LR x
�

 and the p-value of x
�

.  In 

frequentist inference, the CLR ( kα ) depends on the context, but it is usually 

considered that α  does not (i.e. that a given value of α  corresponds to a given rigor, 

regardless of the context); this gives rise to the problem that occurs when the sample 

size is very large and so is the CLR, with the result that H is rejected when the data is 

far more consistent with H than with K.  There is not, in general, an upper bound on 

the CLR for any given value of α ; even when α  is very small, we can find a model 

and hypotheses to make the CLR arbitrarily large.  Tests on the mean of a Normal 

population illustrate this point, as follows.   

 

The LR of the critical (cut-off) point for a one-sided, -levelα  z-test is: 

  

 12CLR=LR(c ) exp{ ( 2 )},zδ
α αδ −= −  

 

where 1 2| |µ µ
σδ −= and 1

1 (1 )z α α−
− = Φ − .  For 1z αδ −>  this is an increasing function of 

δ , indicating that, for any 1,   and α σ µ , it is possible to make the CLR arbitrarily 

large by choosing a value of 2µ  that is far enough away from 1µ .  Some instances are 

shown below for the case 11,  0,  5%,  1.645cασ µ α= = = = .    

 

 

                                                 
11 This is not to say that we must use the same CLR in all contexts; we can vary the level of rigor (i.e. 
bias) depending on our aims and circumstances.  However, a LR of 1

32 , in one context, always amounts 

to stronger evidence against H than a LR of 1
10 , in another context, regardless of how much the 

contexts vary. 



 Chapter 7: An alternative measure of evidence. 

 166

Table 7.2 

2µ  1.645 2.000 3.290 5.000  10.000 

CLR=LR(1.645) 1
3.90.258 ≈ 1

3.60.275 ≈ 1.00 71.933 143.726 10×  

 

 

When testing 0µ =  versus 10µ = , we reject H in favour of K at the 5% level even 

when the likelihood ratio of the data is of the order of 1410  and therefore favours H 

over K to about the same degree as 48 consecutive heads favours the double-headed 

hypothesis in the canonical example. (Intuitively, this rule makes no sense; an 

observation such as (say) 1.8x =  (in the rejection region) is far more consistent with 

0µ =  than 10µ = .)  Even when 2µ  and 1µ  are closer together, we do not require 

very strong evidence against H in order to reject it.  The value of 2µ  that produces the 

smallest CLR is 2 cαµ = , but even in this case the CLR is 1
3.90.258 ≈ , indicating that 

we may reject H in favour of K when the evidence favours K to a lesser degree than 

the outcome hh (LR= 1
4 ) favours the double-headed hypothesis.  For the Normal 

location case, the 5% criterion never requires strong evidence against H.   

 

This answers the question that we posed in Chapter 3, ‘Does rejecting H in favour of a 

composite hypothesis necessarily imply than that for some component of the 

composite (i.e. some value of 2µ ) the evidence strongly favours 2µ  over Hµ ?’ The 

answer is no, since we see above that we may reject H: 0µ =  in favour of K: 0µ >  at 

the 5% level and yet, for no value of 2 0µ >  is the CLR less than 1
3.9 ; no data in the 

rejection region favours any hypothesised value of µ  to a much greater degree than 

0µ = .  In the Normal case, if we make α  small enough, we can reach a point where 

rejecting a composite hypothesis does mean that the CLR is significantly small for 

some component of the alternative hypothesis, but it is necessary to use significance 

levels that are a lot smaller than the conventional 5%. 
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Table 7.3 

Smallest CLR One-sided α  
1
8  2.07% 

1
16  0.92% 

1
32  0.42% 

 

Even a one-sided test at the 2.5% level (or a 5% two-sided test) does not produce a 

significantly small value of the CLR for any component of the alternative; the 

smallest value at this -levelα  is 1
6.8 .  The one-sided p-value must be well under 1

2 %  

before the test requires ‘quite strong’ evidence (LR 1
32≤ ) in favour of any of the 

alternative values. 

 

In the Normal location case, the likelihood ratio statistic, for any two simple 

hypotheses, takes values in the interval (0, )∞ ; thus, it is always theoretically possible 

to observe data with a genuinely small LR.  However, there are models and 

hypotheses where no data has a LR than is sufficiently small to constitute strong 

evidence against H relative to K, and yet it is still possible to get small p-values. 

 

Example 7.1. 

 

Consider a test on the mean of an Exponential population based on a single 

observation.  The density of the variable X  is given by: 

 

 /1( ; ) , 0, 0.xf x e xθ
θθ θ−= > >  

 

For the hypotheses H: 2θ =  versus K: 1θ = , the likelihood ratio is: 

 

 / 21
2( ) ( ;2) / ( ;1) xy LR x f x f x e= = = . 

 

Thus, the ( )LR x  only takes values in the interval 1
2( , )∞ ; a likelihood ratio of 1

2  is the 

strongest evidence against H relative to K that sampling x  can ever produce.  This 
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evidence is not very strong, only the same as the evidence for the double-headed coin 

contained in the outcome from a single coin toss (h).  Yet we can easily reject H using 

conventional methods since the p-value – a relative measure – is small whenever the 

likelihood ratio is among the smallest that we can possibly get in the given context.  

Thus, in this case, / 2p-value( ) 1 0xx e−= − →  as 0x → ; for instance, the p-value of 

0.002x =  is 1
10 % , but the LR of this value is still greater than 1

2 .  It is in the nature of 

this experiment that it can never produce even moderately strong evidence in favour 

of K relative to H, yet we can still get highly ‘statistically significant’ results.  

 

 

Confidence intervals and likelihood intervals. 
 

In addition to performing tests, we can find interval estimates for θ  based on the level 

of evidence in the data.  These are called ‘likelihood intervals’ (LI) and have the same 

relationship to likelihood test results as confidence intervals have to hypothesis test 

results.  Recall that a (two-sided) 100(1 )%α−  CI, based on data x
�

, contains all and 

only those values of θ  that would not be rejected in favour of any alternative value by 

a conventional hypothesis test conducted at level 2α .  (If the tests involved are 

Neyman-Pearson optimal, then so are the confidence intervals.)   Similarly, for any 

1λ > , the 1
λ  LI contains all those values of θ  that (when specified as the null 

hypothesis, H) would not be rejected in favour of any alternative (K) by a test using 

the criterion: 

 

 
1

Reject H in favour of K whenever
 

( ) ( ) ( ) .H KLR x f x f x λ= ≤
� � �

 

 

 

Thus, the value 1'  LIλθ ∈  if and only if 1
',  ( ) ( )f x f xθ θλθ∀ ∈Θ >
� �

. If θ̂  is a maximum 

likelihood estimate of θ , based on x
�

, then ˆ ( ) ( ),  f x f xθθ
θ≥ ∀

� �
, and a necessary and 

sufficient condition for 'θ  to be in the LI is: 1
ˆ' ( ) ( )f x f xθ λ θ

>
� �

.  For example, 'θ  is in 

the 1
8 LI for θ , if and only if ' ( )f xθ �

 is at least one-eighth of the maximum value 
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reached by the likelihood of x
�

 as a function of θ  ( x
�

 fixed).  It is a fact that 

likelihood intervals associated with evidentially significant levels, e.g. 1/8 or less, are 

usually wider than the 95% confidence interval based on the same data, sometimes 

much wider.  This can give the impression that likelihood inference is less 

informative, but the phenomenon is due to the fact that the criteria for excluding a 

value from a LI are more reasonable and more stringent than those for excluding a 

value from a CI.  The following example, again involving the exponential model, 

illustrates this point. 

 

Example 7.2. 

 

Consider the exponential model: /1( ; ) , 0, 0,xf x e xθ
θθ θ−= > >  where ( )E Xθ = .   

 

The conventional two-sided 100(1 )%α−  confidence interval for θ , based on a single 

observation, x , is 1 12 2
2( {ln( )} , {ln( )} )x xα α

− −
− .  This interval excludes all (and only) 

those values that, if specified in the null hypothesis, would be rejected in favour of 

some alternative at the 2
α  significance level. 

 

For a fixed value of x , the value of θ +∈\  that maximises the likelihood (density) is 

xθ = , thus the maximum value taken by the likelihood function is / 11 1x x
x xe e− −=  m=  

(for ‘maximum’).  The 1
λ  likelihood interval for θ  is the interval that excludes all 

(and only) those values of θ  such that ( ; ) /f x mθ λ≤ , i.e. excluding all those values 

that would be rejected in favour of some alternative by a dichotomous likelihood test 

using an evidential level of 1 , ( 1)λ λ > . 

 

For this model, we have calculated confidence intervals with coverage of 99%, 98% 

and 95% and likelihood intervals with evidential levels 1 1 1
32 16 8, ,  and , based on the 

data 3x = ; the likelihood intervals are very much wider than the confidence intervals. 

(Note that the confidence intervals are based on tests using the levels ½ %, 1% and 

2½% respectively.) 
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Table 7.4 

100(1 )%α−  Confidence 

Interval. 

1
λ

 Likelihood 

Interval. 

99% (1.001, 58.487) 1/32 (0.476, 285.714)

98% (1.303, 28.474) 1/16 (0.548, 133.333)

95% (2.164, 10.428) 1/8 (0.651,  60.606) 

 

The lowest ‘significant’ evidential level is 1/8, hence the narrowest significant 

interval is the 1/8 interval; this is about the same width as the 99% confidence 

interval.  The standard 95% confidence interval is very much narrower. 

 

Figure 7.1 

706050403020100

1

1/2

1/8

0

UL

θ

L(theta|x=3)

Standardised likelihood: Exponential model.
(L,U) = 95% CI for theta.

 
 

The plot shows the 95% confidence interval lower and upper bounds (L and U) on a 

plot of the standardised likelihood function.  (The 1/8 likelihood interval, (0.65, 60.6), 

can be deduced from the points at which the horizontal line at 1/8 crosses the 

likelihood curve.)  The maximum value of the function occurs at 3xθ = = ; the lower 

bound of the CI is very close to this point and has a standardised likelihood of over 

0.9, so that the CI excludes (on the left side) many values that are almost as likely as 

the maximum likelihood estimate.  Even the right bound has a standardised likelihood 

of more than 0.5.  In fact, the 95% confidence interval is completely contained in the 
1
2 - likelihood interval, which excludes all values of θ  that are inconsistent with the 

data to at least the same degree that the hypothesis ‘fair coin’ is inconsistent with a 
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single coin toss resulting in a single head (relative to the hypothesis ‘double-headed 

coin’).  Thus the 95% CI excludes values of θ  against which the evidence is weaker 

than that associated with a likelihood ratio of 1
2 .  The 95% confidence procedure will 

indeed produce intervals that contain the true value of θ  ninety-five percent of the 

time in the long run of samples, but it excludes a great many values of θ  that are 

plausible according to this data, nor is the judgement consistent – some of the values 

excluded on the left side of the interval are more likely than some of the values 

(greater than 3) included on the right side. 

 

When we compare conventional frequentist tests with tests based on observing the 

strength of evidence through the LR, and compare confidence intervals with 

likelihood intervals, we see that it is not the case that events which occur only rarely 

(under H) necessarily constitute strong evidence against H relative to a given K, or 

even, relative to any K, for a given model.  When we compare H with a specific K, it 

is not even true that an event with an arbitrarily small probability will necessarily 

constitute evidence against H relative to K.   

 

Why a small p-value is not enough. 
 

For a test of two simple hypotheses, the conventional p-value of the data with a 

likelihood ratio of y  is always less than y , as follows.   

(Note that p-value( ) ( ( ) ( )Hx P LR X LR x= ≤
�� �

.) 

 

Let f  and F  be the density and distribution functions of the likelihood ratio statistic, 

Y , respectively, then ( )
( ),  H

K

f y
f yy y∀ = .  Let 1y <  (the proof is trivial for 1y > ), then: 
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It follows that, if y  is small, the p-value must also be small but not vice versa.  Thus a 

small p-value is a necessary, but not sufficient, condition for the data to constitute 

strong evidence against H relative to K.  The criterion for rejecting H in favour of K is 

not rigorous enough in frequentist inference.  

 

Robbins’ result. 
 

Although data that occurs only rarely (under H) does not necessarily constitute 

reasonably strong evidence against H (relative to some K), the converse is true, i.e. 

data that constitutes strong evidence against H (relative to some K) occurs only rarely 

when H is true.  Suppose that a random vector X
�

 has density ( )Hf ⋅  if H is true, and 

( )Kf ⋅  if K is true.  We will reject H if we observe x
�

 such that 

1 ( ) ( ) / ( )H KLR x f x f x λ= ≤
� � �

.  What is the probability that this will happen if H is 

actually true?  The exact probability depends on Hf  and Kf , but we can find a 

general upper bound. 

 

For all 1 such that ( )x LR x λ≤
� �

, ( ) ( ) /H Kf x f x λ≤
� �

, therefore: 

 

1

1: ( )

1: ( )

1
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                                ( ( ) / )

                                ( )

                                .
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x LR x
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λ
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≤
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An even stronger result is due to Robbins (1970), following work by Ville and Wald; 

the version that most concerns us is given by Royall12 in a form close to the following.  

Suppose that we use the stopping rule ‘Continue sampling until 1( )LR x λ≤
�

’.  This 

rule is designed to elicit evidence that favours K against H to the -degreeλ ; despite 

this, the probability of finishing the experiment in any finite time with the desired 

result is low whenever H is true, as follows. 

 

Let 1( , , )T
nX X X= …

�
, where 1, , nX X…  are independent and identically distributed 

random variables with density ( )Hf ⋅  and ( )Kf ⋅  under hypotheses H and K, and thus 

1

( ) { ( ) / ( )}
n

H i K i
i

LR X f X f X
=

=∏�
.  Then, 1 1{ ( )  for some finite }HP LR X nλ λ≤ ≤

�
. 

 

Under H, the probability that we will observe data that provides evidence for K 

against H to the degree specified by λ  is no greater than 1/λ .  This is an upper 

bound on the probability the exact value of which varies with the model and 

hypotheses; it shows that we can ensure that the probability (under H) of rejecting H 

in favour of K is no greater than (say) 5%, by using 20λ =  in our CLR; the 

probability of Type I error is then bounded above by 5% no matter what the model 

and hypotheses may be and no matter which stopping rule we use.  The fact that this 

result is independent of the stopping rule means that, as long as the rejection criterion 

is reasonably stringent ( 1)λ � , the result of the experiment cannot be rigged (except 

with a small probability of success) to reject a true hypothesis in favour of any 

specific alternative by using a biased stopping rule.   

 

It is also the case13 that, whenever we test a specific hypothesis against any other, 

there exists a finite sample size, ( , )n n λ ε= , large enough that the evidence will 

favour whichever of the two hypotheses is true by a factor of λ  with probability 1 ε−  

( 0)ε > . 

 

                                                 
12 Royall, p. 7. 
13 Royall, pp. 7, 8. 
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Birnbaum noted that adherence to the likelihood principle is, in general, inconsistent 

with the controlling of error probabilities14, and his supposed rejection of the 

likelihood principle15 – which gave some comfort to frequentists16 – was based on this 

point.  However it is clear that the conflict only arises when we use composite 

hypotheses; for the case of two simple hypotheses it is quite possible to have your 

cake and eat it too (as pointed out by Giere17, almost in an aside).  In such a case we 

can retain the before-experiment error probabilities as an essential feature of the 

design while using appropriate values of the likelihood ratio of the data for the after-

experiment evaluation of evidence. 

 

Weak evidence. 
 

In Chapter 3, we showed that observed data may be ‘weak’ in the sense of providing 

little information about which of two specified hypotheses is true, and that this can 

happen even when an optimal test has very low values of α  and β .  One of the 

reasons for performing conditional inferences has been to distinguish between data 

that is more or less informative about the question at issue.18  Standard tests do not 

distinguish between weak and strong data; they put weak data into one or other or 

both (accept/reject) regions.  High power tests put weak data in the rejection region 

where it counts towards the power of the test (often interpreted as ‘the test’s ability to 

detect that K is true’) despite the fact that it is not good evidence for the truth of K 

rather than H.  When the power is less high, some of the weak data lies in the 

acceptance region where it contributes to 1 α− ( (Accept H| H true)P= ) despite the 

fact that it is not good evidence for H.  For fixed sample sizes, Royall has shown19 

that, in order to achieve a high probability that the data will be neither misleading (i.e. 

providing strong evidence against the true hypothesis) nor weak (giving no definite 

evidence either way), it is necessary to use sample sizes much larger that those which 

                                                 
14 Unpublished MS, quoted in Giere. 
15 Birnbaum (1977), p. 24.  “A concept of statistical evidence is not plausible unless it finds ‘strong 
evidence for K as against H’ with small probability ( )α  when H is true, and with much larger 
probability (1 )β−  when K is true.”  This paper was published after Birnbaum’s death in 1976. 
16 See Stuart, Ord & Arnold, p.440. 
17 Giere, p. 10. 
18 See Buehler (1982), Cox (1988). 
19 Royall, pp. 90-107. 
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produce high power for conventional significance levels.  This is not surprising since 

it is a more ambitious aim; by making the power high and significance level low, we 

control the probability of misleading evidence, but not weak evidence. 

 

7.4 Where to for frequentist inference? 

 

The contrast afforded by likelihood inference highlights again the shortcomings of 

conventional frequentist inference when it comes to answering the question ‘Does this 

data constitute strong evidence against H relative to K?’  Does this mean that we must 

either live with the consequences of these problems, completely unalleviated, or 

abandon frequentism altogether in favour of a likelihood method?  We have seen that 

restricted conditioning, of the forms championed by Cox or Fisher, does nothing to 

mitigate the problems that arise when we try to answer this question using the 

frequentist approach; the characteristics of frequentist inferences carried out on the 

sample spaces of sub-experiments (as usually defined) are no better (in any systematic 

sense) than those that arise from applications to umbrella experiments.  Nevertheless, 

since unrestricted conditioning leads to the likelihood principle and methods 

consistent with the likelihood principle are free of these problems, it is plausible that 

some conditioning approach, short of unrestricted conditioning, may improve matters, 

while still allowing us to retain the frequentist framework.  In the rest of this work, we 

show that it is possible to use Fisher/Cox conditioning in a way that is more fruitful 

than its traditional application.  The resulting exhaustive conditional inference is 

wholly based on the frequentist approach and yet it is altogether free of some of the 

failings associated with frequentism and greatly mitigates others.  This approach 

produces results that are radically different from conventional frequentist inferences 

and, in important respects, much closer to likelihood inferences. 

 

 

 

 

 

 

 


