Chapter 7: An alternative measure of evidence.

In Neyman-Pearson hypothesis testing, the error probabilities are primary. The
probability of Type I error (significance level) is fixed in advance of the experiment
and determines the critical likelihood ratio (CLR). If a unique, optimal NP test exists
for testing two simple hypotheses, it will have higher power than any other test with
the same significance level. We can often design a test so that both error probabilities
are low by choosing an appropriate sample size. There is no doubt that the error
probabilities are an important feature of experimental design, however, NP inference
goes much further by making them the basis of the inference. Although the most
powerful test is based on the likelihood ratio statistic (which is the minimal sufficient
statistic for a binary parameter space), the critical likelihood ratio is determined by « .
If, on the other hand, the LR were primary, « would be determined by the choice of
CLR. This distinction is important because a result due to Robbins (see below) shows
that, while a low CLR guarantees a low « , the converse is not true; we have already
cited a case (Example 3.1) where « is conventionally low and yet the CLR is high,
with the result that we reject H when the data is far more consistent with H than with
K. Thus, low error probabilities, alone, are not an adequate criterion for a good test;
the test result must tell us about something that we are interested in, only then is the

fact that it will be correct a high proportion of the time of value.

Cox distinguished® between “making statements by a rule with certain specified long-
run properties” and finding out “what we can learn from the data that we have”. The
former describes an approach that only has good error probabilities, i.e. where the
‘statements’ have been designed with the sole purpose of producing low error
probabilities and have no other intrinsic quality. Yet, when introductory textbooks
focus on examples where the data does comprise strong evidence against H as well as
having a low p-value, they create a perception that these things are the same, and the
widespread use of composite hypotheses further muddies the water since our ability to

intuitively assess the evidence is lost — evidence against H relative to what?

! Cox (1958), pp. 360, 361.
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In this work, we are interested in evidential inference and, specifically, in finding a
good answer to the question ‘Does the data constitute strong evidence against H
relative to K?” This is one reason why we discuss most issues in the context of a
comparison of two simple hypotheses. It can be objected that this is not a particularly
realistic scenario: many tests that are carried out for practical purposes involve one or

more composite hypotheses; for example, x=0 versus x> 0. Since many of the

problems with conventional inference are most easily observed in the case of two
simple hypotheses, it may be tempting to believe that the scope of these problems is
similarly limited; however this leaves some important questions unanswered. Is it
claimed that a methodology that does not work (with respect to assessing evidence) in
the case of two simple hypotheses nevertheless does work when we use composite
hypotheses? Why should this be so, and how could it be proved? How do we interpret

a composite hypothesis? Does x>0 mean the same as the disjunction of {x =r}

over all r e R, and, if so, why would we expect there to be a single meaningful
answer to a large number of varied questions, or accept an approach that can be
shown not to work for certain simple components of the composite? If, on the other

hand, x>0 does not amount to a disjunction of many statements, what exactly does

it mean, and how can we hope to interpret the result evidentially (or in any other way)
when we do not know what issue we are investigating? Without clear answers to
these questions it is impossible to make the case that standard methodology works for
this scenario. It is plausible that the problems with standard methodology are simply
obscured (rather than absent) in the composite-hypothesis context because of the
greater complexity and vagueness in such a case; these features make it almost
impossible to answer the question ‘Does the conventional inference make sense here?’
Being unable to answer this question, or even understand its meaning, does not

amount to answering it in the affirmative.
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7.1 Using the likelihood ratio as a measure of evidence.

The Neyman-Pearson theorem shows that a critical region based on the likelihood
ratio statistic produces the most powerful test (where such a thing exists); this critical
region contains all the data with a relatively small likelihood ratio. It is widely
believed that a small p-value or (equivalently) the rejection of H at a low significance
level signifies data that constitutes strong evidence against H (see Efron quotation in
Chapter 2). An alternative view is that the likelihood ratio value measures the

evidence in absolute terms (a position adopted most recently by Royall).

In the later chapters of this work we will extend the manner and scope of conditioning
within the frequentist framework. In this chapter we argue that the likelihood ratio is a
good non-frequentist measure of the evidence favouring one (simple) hypothesis
relative to another, and show how it is used. This will provide us with a concrete
measure with which to compare the results of conditional inferences developed in the
following chapters, though we will also, at times, assess them directly by common-
sense reference to the null and alternative distributions, as we did with conventional

inferences in Chapters 3 & 6.

The quantitative law of likelihood.

Under this interpretation, a given value of the likelihood ratio corresponds to a given
level of evidence for H relative to K. This association between the likelihood ratio
and the level of evidence does not depend on the model® or other context of the
problem as it does in frequentist inference; in frequentist inference, the same critical
likelihood ratio is associated with widely varying « -values, significant in some cases
but not others, depending on the model and hypotheses. Royall’s Quantitative Law of
Likelihood describes the connection between likelihood ratio and evidence, as

follows.

2 Except in so far as the model affects the value of the likelihood ratio itself through the two likelihood
values.
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The Quantitative Law of Likelihood® (QLL):

If hypothesis H implies that the likelihood of a random variable X at x is

L, (x), while hypothesis K implies that the likelihood is L, (x), then the
observation X = x is evidence supporting H over K if and only if L (x) > L, (X)
[i.e. LR>1], and the likelihood ratio, L, (x)/L, (x), measures the strength of that

evidence.
This is a quantitative extension of the Law of Likelihood (LL), defined by Hacking®:

d [data] supports h better than i whenever the likelihood ratio of h to i given

d exceeds 1.

(Hacking’s one-way implication (‘whenever’) is usually replaced by the two-way ‘if

and only if’, which Royall also employs. °)

Before we look at basing inferences on the QLL, we need to consider some criticisms
of the LL. Fitelson (2007) describes a number of cases that seem to be counter-
examples to the LL (and thus also to the QLL). Some depend on allocating certain
priors to the hypotheses “so, it seems to me that Likelihoodists needn’t be swayed by
such examples™®, but another is rather more serious. It is possible to identify cases
where the likelihood ratio of the data is more than one despite the fact that the data
entails K but not H'; in such circumstances, it seems unreasonable to interpret the data
as support for H over K, as the LL requires. However, this does not pose a problem
for the application of the LL (or QLL) in this work, for the following reason. As will
be seen in Chapters 8 and 9, the methodology we develop involves only binary
parameter spaces within which the two (simple) hypotheses are logical opposites, i.e.

in all cases, K =~ H . Itis easy to show that, under these circumstances, Fitelson’s

* Royall, p. 3.

* Hacking, p. 71.

% See, for instance Fitelson, p. 3.
® Fitelson, p. 5.

" Fitelson, p.5.
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paradoxical cases cannot arise (since the likelihood ratio must be zero if the data
entails K). Fitelson also shows that, under our circumstances (i.e. where K=~ H)
the LL is consistent with “any Bayesian relevance measure of degree of non-relational
confirmation.”® Thus, (in our case) the reader is free to accept the LL criterion for
any one of a number of different reasons. The QLL says that the likelihood ratio
measures the degree to which H is favoured over K, but this measure is also, in our

case, equivalent to a number of others; for instance, LR(E) =r >1 if and only if

ey =1° >1 (where I(H*,E) is the Bayesian relevance measure of degree of non-
- - - - _ P(ElH*) - -
relational confirmation defined by I(H*,E) = 555, see Fitelson, p. 7). In short, it

IS not necessary to accept that the QLL criterion is appropriate in all circumstances, in

order to accept its use in the context of this work.

Features of the likelihood ratio as a measure of evidence.

Any inference method based solely on the likelihood ratio as a measure of evidence,

in accordance with the QLL, has the following features:

a) The method satisfies the likelihood principle (LP) and, hence, the CP (both

restricted and unrestricted) and the SP.

b) The inference will be the same for the same observations produced by

different stopping rules (as long as they produce the same LR).

c) The inference will tend to be very sensitive to the exact specification of both

hypotheses — not just the ‘null’ hypothesis.

d) It will not be possible to test a composite hypothesis other than in very
exceptional circumstances; for instance we can only test simple H against

composite K using data x if LR(x) =L, (>~<)/LKi (x) is the same V K, e K.

Note also that, by symmetry, a LR of one corresponds to data that is neutral regarding

the two hypotheses.

8 Fitelson, p. 11.
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7.2 Royall’s canonical experiment.®

If the likelihood ratio measures the evidence in favour of H relative to K, with one
corresponding to neutrality, when is the value large enough or small enough to
constitute strong or significant evidence in favour of one or other hypothesis? There

is no probabilistic interpretation of the LR since it lies in the interval (0, 0) rather than
(0,2). The best way to establish the meaning of the value is to look at a simple

example and consider how strong the evidence needs to be before we regard it as
significant. In order to do this, we need to stipulate prior probabilities, on our two
hypotheses, of ¥2 and % so that our judgement is due to the data only, not to any initial

preference between the hypotheses.

Suppose we have a coin before us and are interested in two hypotheses regarding

p =P(head), namely:

H: the coin is fair, i.e. p=3
K: the coin is double headed, i.e. p =1.

To establish the appropriate priors, suppose that we possess two coins one of which is
indeed fair and the other double-headed and that one of these two coins has been
randomly selected, with a probability of one half, and placed before us. This prevents

us from being influenced by the view that K is intrinsically less plausible than H.

Clearly, we can dismiss K as soon as we obtain even one tail, but let us consider the
case where all tosses of the coin result in a head; how many heads do we need to
throw in order to feel that we have significant evidence that the coin is double-headed
rather than fair? The likelihood ratios of H relative to K of some possible outcomes

are shown below.

Table 7.1
Outcomes h | hh | hhh | hhhh | hhhhh | hhhhhh | hhhhhhh
Likelihood ratio AR EE; i ' L 1

° Royall, p. 11.
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If you feel that tossing the coin three times and getting a head on each occasion
constitutes significant evidence that the coin is double-headed rather than fair, then

you regard a likelihood ratio of § or of 8 as being ‘significant’. If two heads out of
two tosses leaves you very doubtful, then you do not regard a likelihood ratio of % (or

4) as significant. Royall takes the view that a likelihood ratio of 8 is “fairly strong
evidence” and a likelihood ratio of 32, corresponding to five heads out of five tosses,
is “quite strong evidence”.® (My own intuition is that 3 heads is not significant
evidence.) Inany given case, the strength of evidence represented by the likelihood
ratio of the observed data can be judged by reference to this simple example; for

instance, if your data, x, has a likelihood ratio of 500 (or 1/500), the evidence favours
one of your hypotheses nearly as strongly as nine heads out of nine tosses favours K,
while, if your data has a likelihood ratio of 1/6.8 (a figure that arises in testing
hypotheses about the mean of a Normal variate), the evidence is not as strong as that

from the outcome hhh.

7.3 Basing a dichotomous inference on the likelihood ratio.

The likelihood ratio is a continuous measure and there is no need to use it only in a
yes-or-no format. However, in the interest of comparing it with standard hypothesis
testing techniques we will consider the case where we want to specify a critical
likelihood ratio (CLR) and use it as the basis for accepting H as opposed to K (when
LR(x) > CLR) or rejecting H in favour of K (when LR(x) <CLR). Since we are
principally interested in rejecting H when there is strong evidence against H relative
to K, we will use a CLR of ¥, where A>1. The two error probabilities of the test,
a(A) and S(4), depend on A ; by the Neyman-Pearson theorem, the power

k(A1) =1- p(A) will be the highest that can be produced by any dichotomous test of

level (A1), since the test is based on the likelihood ratio statistic.

10 Royall, p. 26.
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Bias.

We saw in Chapter 3 that trying to control the bias between the hypotheses can lead
us towards a LR-based inferential rule. The bias (between the two hypotheses) is
readily identifiable, for any dichotomous rule, from the CLR itself. (This is also true
in frequentist inference; but in that case the actual value of the CLR is almost never
calculated. The cut-off value used in the test is the critical value for the natural
statistic — not the critical value of the likelihood ratio statistic. Also, when either of
the hypotheses is composite, there is no single CLR; the CLR of the test varies
depending on which component of the composite hypothesis we consider.) The rule
will be unbiased only if the CLR is one; we can construct a test that is biased in
favour of H and only rejects H when there is strong evidence in favour of K (relative
to H) by making the CLR sufficiently far below one, for example by rejecting H only

when LR(x) <45 ; any test where the CLR>1 is biased in favour of K and the larger

the CLR, the stronger the bias.

Contrasts and criticisms of frequentist inference via the likelihood
ratio measure of evidence.

How significant is statistical significance?

Despite the prominent place give to the likelihood ratio statistic in the Neyman-
Pearson theorem, there is an immense difference between methods such as that of
Royall (or any method consistent with the LP) and that of Neyman & Pearson or the
Fisher-Neyman-Pearson hybrids. This is because, in the likelihood methods, the
likelihood ratio is interpreted in absolute rather than relative terms. The Neyman-
Pearson theorem justifies rejecting H in favour of K when the likelihood ratio is less
than a constant k , which is chosen so that (under H) most of the likelihood ratios
observed from repetitions of the experiment will be larger than k ; however this does
not amount to rejecting H whenever the likelihood ratio is small because k may not
be small. By contrast Royall’s interpretation of the likelihood ratio is constant. A

likelihood ratio of 4 constitutes very weak evidence against H relative to K and this is
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just as true for experiments that produce likelihood ratios in the range [,3], so that

is the strongest evidence against H that can ever be observed, as for those where the

likelihood ratio lies in [ ,3], so that much stronger evidence against H is

observable.

Under Royall’s paradigm, a given LR is interpreted the same way in all contexts™,
and only likelihood ratios less than one are regarded as evidence against H (relative to
K) to any degree whatsoever. By contrast, in frequentist inference, there is no general

connection between the CLR and «, or between LR(X) and the p-value of x. In
frequentist inference, the CLR (k) depends on the context, but it is usually

considered that « does not (i.e. that a given value of « corresponds to a given rigor,
regardless of the context); this gives rise to the problem that occurs when the sample
size is very large and so is the CLR, with the result that H is rejected when the data is
far more consistent with H than with K. There is not, in general, an upper bound on
the CLR for any given value of « ; even when « is very small, we can find a model
and hypotheses to make the CLR arbitrarily large. Tests on the mean of a Normal

population illustrate this point, as follows.

The LR of the critical (cut-off) point for a one-sided, a-level z-test is:

CLR=LR(c,) =exp{5 (6 -27,_,)}.

where 6 =%l and 7, =®*(1-a). For § >z,_, this is an increasing function of
o , indicating that, for any «, o and g, it is possible to make the CLR arbitrarily
large by choosing a value of y, that is far enough away from z4 . Some instances are

shown below for the case o =1, 1, =0, o =5%, ¢, =1.645.

! This is not to say that we must use the same CLR in all contexts; we can vary the level of rigor (i.e.
bias) depending on our aims and circumstances. However, a LR of 3—12 , in one context, always amounts

1

to stronger evidence against H than a LR of 55,

contexts vary.

in another context, regardless of how much the
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Table 7.2

Ly 1.645 2.000 3.290 | 5.000 | 10.000

CLR=LR(1.645) | 0.258~-% | 0.275~-% [ 1.00 |71.933 [ 3.726x10"

When testing x« =0 versus x =10, we reject H in favour of K at the 5% level even

when the likelihood ratio of the data is of the order of 10** and therefore favours H
over K to about the same degree as 48 consecutive heads favours the double-headed
hypothesis in the canonical example. (Intuitively, this rule makes no sense; an
observation such as (say) x =1.8 (in the rejection region) is far more consistent with

u=0 than £ =10.) Evenwhen x, and g, are closer together, we do not require
very strong evidence against H in order to reject it. The value of , that produces the

smallest CLR is x, =c,, but even in this case the CLR is 0.258 ~ 2%, indicating that

39"
we may reject H in favour of K when the evidence favours K to a lesser degree than

the outcome hh (LR=1%) favours the double-headed hypothesis. For the Normal

location case, the 5% criterion never requires strong evidence against H.

This answers the question that we posed in Chapter 3, ‘Does rejecting H in favour of a
composite hypothesis necessarily imply than that for some component of the
composite (i.e. some value of y, ) the evidence strongly favours x, over g, ?” The
answer is no, since we see above that we may reject H: =0 in favour of K: >0 at

the 5% level and yet, for no value of z, >0 is the CLR less than 25 ; no data in the

rejection region favours any hypothesised value of 4 to a much greater degree than
4 =0. Inthe Normal case, if we make « small enough, we can reach a point where

rejecting a composite hypothesis does mean that the CLR is significantly small for
some component of the alternative hypothesis, but it is necessary to use significance
levels that are a lot smaller than the conventional 5%.
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Table 7.3

Smallest CLR | One-sided o
1 2.07%
L 0.92%
< 0.42%

Even a one-sided test at the 2.5% level (or a 5% two-sided test) does not produce a
significantly small value of the CLR for any component of the alternative; the

smallest value at this a-level is 5. The one-sided p-value must be well under %
before the test requires ‘quite strong” evidence (LR <3 ) in favour of any of the

alternative values.

In the Normal location case, the likelihood ratio statistic, for any two simple

hypotheses, takes values in the interval (0, ) ; thus, it is always theoretically possible

to observe data with a genuinely small LR. However, there are models and
hypotheses where no data has a LR than is sufficiently small to constitute strong
evidence against H relative to K, and yet it is still possible to get small p-values.

Example 7.1.

Consider a test on the mean of an Exponential population based on a single

observation. The density of the variable X is given by:

f(x;0)=1e? x>0,6>0.

6

For the hypotheses H: & = 2 versus K: 8 =1, the likelihood ratio is:

y=LR(X)=f(x;2)/ f(X;l):%eX’zl

Thus, the LR(x) only takes values in the interval (3,); a likelihood ratio of 1 is the

strongest evidence against H relative to K that sampling x can ever produce. This
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evidence is not very strong, only the same as the evidence for the double-headed coin
contained in the outcome from a single coin toss (h). Yet we can easily reject H using
conventional methods since the p-value — a relative measure — is small whenever the

likelihood ratio is among the smallest that we can possibly get in the given context.

x/2

Thus, in this case, p-value(x)=1-e™“ — 0 as x — 0; for instance, the p-value of

x=0.002 is 5%, but the LR of this value is still greater than ;. Itis in the nature of

this experiment that it can never produce even moderately strong evidence in favour

of K relative to H, yet we can still get highly ‘statistically significant’ results.

Confidence intervals and likelihood intervals.

In addition to performing tests, we can find interval estimates for & based on the level
of evidence in the data. These are called ‘likelihood intervals’ (LI) and have the same
relationship to likelihood test results as confidence intervals have to hypothesis test
results. Recall that a (two-sided) 100(1-«)% CI, based on data x, contains all and
only those values of @ that would not be rejected in favour of any alternative value by
a conventional hypothesis test conducted at level «/2. (If the tests involved are
Neyman-Pearson optimal, then so are the confidence intervals.) Similarly, for any
A>1,the ¥ LI contains all those values of & that (when specified as the null
hypothesis, H) would not be rejected in favour of any alternative (K) by a test using

the criterion:

Reject H in favour of K whenever
LR(x) = f, (X)/ f (X) < %.

Thus, the value '€, LI ifandonly if VA€ ®, f,.(x) >+ f,(x). If 6 is a maximum
likelihood estimate of &, based on x, then f;(x) > f,(x), V&, and a necessary and
sufficient condition for 8" to be inthe L1is: f,(x) >+ f,(x). Forexample, 6" isin

the 3+ LI for @, ifand only if f,.(x) is at least one-eighth of the maximum value
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reached by the likelihood of x as a function of @ (x fixed). Itis a fact that
likelihood intervals associated with evidentially significant levels, e.g. 1/8 or less, are
usually wider than the 95% confidence interval based on the same data, sometimes
much wider. This can give the impression that likelihood inference is less
informative, but the phenomenon is due to the fact that the criteria for excluding a
value from a LI are more reasonable and more stringent than those for excluding a
value from a Cl. The following example, again involving the exponential model,

illustrates this point.

Example 7.2.

Consider the exponential model: f (x;0)=3e™?,x>0,0>0, where §=E(X).

The conventional two-sided 100(1-«)% confidence interval for @, based on a single
observation, x, is (X{In(2)}*, x{In(z%)} ). This interval excludes all (and only)

those values that, if specified in the null hypothesis, would be rejected in favour of

some alternative at the < significance level.

For a fixed value of x, the value of # € R* that maximises the likelihood (density) is

0 = x, thus the maximum value taken by the likelihood function is te™* =1e™ =m

X

(for ‘maximum’). The + likelihood interval for @ is the interval that excludes all
(and only) those values of @ such that f(x;8)<m/ 4, i.e. excluding all those values

that would be rejected in favour of some alternative by a dichotomous likelihood test

using an evidential level of +,(1>1).

For this model, we have calculated confidence intervals with coverage of 99%, 98%
and 95% and likelihood intervals with evidential levels %, , and 3, based on the
data x = 3; the likelihood intervals are very much wider than the confidence intervals.
(Note that the confidence intervals are based on tests using the levels %2 %, 1% and

2Y2% respectively.)
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Table 7.4

100(1- )% | Confidence 1 | Likelihood
Interval. A Interval.

99% (1.001, 58.487) | 1/32 | (0.476, 285.714)

98% (1.303, 28.474) | 1/16 | (0.548, 133.333)

95% (2.164, 10.428) | 1/8 | (0.651, 60.606)

The lowest *significant’ evidential level is 1/8, hence the narrowest significant
interval is the 1/8 interval; this is about the same width as the 99% confidence

interval. The standard 95% confidence interval is very much narrower.

Figure 7.1

Standardised likelihood: Exponential model.
(L,U) = 95% Cl for theta.

L U

1 —

L(theta|x=3)

172 —

1/8

The plot shows the 95% confidence interval lower and upper bounds (L and U) on a
plot of the standardised likelihood function. (The 1/8 likelihood interval, (0.65, 60.6),
can be deduced from the points at which the horizontal line at 1/8 crosses the
likelihood curve.) The maximum value of the function occurs at € = x = 3; the lower
bound of the CI is very close to this point and has a standardised likelihood of over
0.9, so that the CI excludes (on the left side) many values that are almost as likely as
the maximum likelihood estimate. Even the right bound has a standardised likelihood
of more than 0.5. In fact, the 95% confidence interval is completely contained in the

- likelihood interval, which excludes all values of & that are inconsistent with the

data to at least the same degree that the hypothesis “fair coin’ is inconsistent with a
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single coin toss resulting in a single head (relative to the hypothesis ‘double-headed
coin’). Thus the 95% CI excludes values of @ against which the evidence is weaker

than that associated with a likelihood ratio of . The 95% confidence procedure will

indeed produce intervals that contain the true value of & ninety-five percent of the
time in the long run of samples, but it excludes a great many values of & that are
plausible according to this data, nor is the judgement consistent — some of the values
excluded on the left side of the interval are more likely than some of the values

(greater than 3) included on the right side.

When we compare conventional frequentist tests with tests based on observing the
strength of evidence through the LR, and compare confidence intervals with
likelihood intervals, we see that it is not the case that events which occur only rarely
(under H) necessarily constitute strong evidence against H relative to a given K, or
even, relative to any K, for a given model. When we compare H with a specific K, it
is not even true that an event with an arbitrarily small probability will necessarily

constitute evidence against H relative to K.

Why a small p-value is not enough.

For a test of two simple hypotheses, the conventional p-value of the data with a

likelihood ratio of y is always less than y, as follows.

(Note that p-value(x) = B, (LR(X) < LR(X).)

Let f and F be the density and distribution functions of the likelihood ratio statistic,

Y, respectively, then vy, <3 =y. Let y <1 (the proof is trivial for y>1), then:
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p(y)=F,(y)

=]' f, (r)dr

r-f(r)dr

O <

< y-Jy. f (r)dr
0
=Yy-F(y)
<y.
It follows that, if y is small, the p-value must also be small but not vice versa. Thus a
small p-value is a necessary, but not sufficient, condition for the data to constitute
strong evidence against H relative to K. The criterion for rejecting H in favour of K is

not rigorous enough in frequentist inference.

Robbins’ result.

Although data that occurs only rarely (under H) does not necessarily constitute
reasonably strong evidence against H (relative to some K), the converse is true, i.e.
data that constitutes strong evidence against H (relative to some K) occurs only rarely

when H is true. Suppose that a random vector X has density f,(-) if H is true, and
f () if Kistrue. We will reject H if we observe x such that

LR(x) = f, (x)/ f, (x) <% . What is the probability that this will happen if H is
actually true? The exact probability depends on f, and f, , but we can find a

general upper bound.

Forall x suchthat LR(x) <%, f,(x)< f (x)/ A4, therefore:

PR <) = [ £ (0dx
XLR(x)<Y,
< [ () 2)dx
xLR(x)<Y]
=+ [ f(dy
XLR(<Y,

IA
Sl
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An even stronger result is due to Robbins (1970), following work by Ville and Wald;

12
I

the version that most concerns us is given by Royall™ in a form close to the following.

Suppose that we use the stopping rule ‘Continue sampling until LR(x) <%,’. This
rule is designed to elicit evidence that favours K against H to the A-degree ; despite

this, the probability of finishing the experiment in any finite time with the desired

result is low whenever H is true, as follows.

Let X =(X,,...,X,)", where X,,..., X, are independent and identically distributed

random variables with density f,(-) and f, (-) under hypotheses H and K, and thus

LROX) =] J££ (X)/ £ (X,)}. Then, P,{LR(X) < for some finite n} < ;.

i=1

Under H, the probability that we will observe data that provides evidence for K
against H to the degree specified by A is no greater than 1/ 4. This is an upper
bound on the probability the exact value of which varies with the model and
hypotheses; it shows that we can ensure that the probability (under H) of rejecting H
in favour of K is no greater than (say) 5%, by using A =20 in our CLR; the
probability of Type I error is then bounded above by 5% no matter what the model
and hypotheses may be and no matter which stopping rule we use. The fact that this
result is independent of the stopping rule means that, as long as the rejection criterion
is reasonably stringent (1 >1), the result of the experiment cannot be rigged (except
with a small probability of success) to reject a true hypothesis in favour of any

specific alternative by using a biased stopping rule.

It is also the case™ that, whenever we test a specific hypothesis against any other,
there exists a finite sample size, n=n(4, ), large enough that the evidence will
favour whichever of the two hypotheses is true by a factor of 4 with probability 1—&
(¢ >0).

2 Royall, p. 7.
¥ Royall, pp. 7, 8.
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Birnbaum noted that adherence to the likelihood principle is, in general, inconsistent
with the controlling of error probabilities'*, and his supposed rejection of the
likelihood principle®® — which gave some comfort to frequentists'® — was based on this
point. However it is clear that the conflict only arises when we use composite
hypotheses; for the case of two simple hypotheses it is quite possible to have your
cake and eat it too (as pointed out by Giere!’, almost in an aside). In such a case we
can retain the before-experiment error probabilities as an essential feature of the
design while using appropriate values of the likelihood ratio of the data for the after-

experiment evaluation of evidence.

Weak evidence.

In Chapter 3, we showed that observed data may be ‘weak’ in the sense of providing
little information about which of two specified hypotheses is true, and that this can

happen even when an optimal test has very low values of « and f£. One of the

reasons for performing conditional inferences has been to distinguish between data
that is more or less informative about the question at issue.*® Standard tests do not
distinguish between weak and strong data; they put weak data into one or other or
both (accept/reject) regions. High power tests put weak data in the rejection region
where it counts towards the power of the test (often interpreted as ‘the test’s ability to
detect that K is true’) despite the fact that it is not good evidence for the truth of K
rather than H. When the power is less high, some of the weak data lies in the

acceptance region where it contributes to 1—« (= P(Accept H| H true) ) despite the

fact that it is not good evidence for H. For fixed sample sizes, Royall has shown™®
that, in order to achieve a high probability that the data will be neither misleading (i.e.
providing strong evidence against the true hypothesis) nor weak (giving no definite

evidence either way), it is necessary to use sample sizes much larger that those which

% Unpublished MS, quoted in Giere.
15 Birnbaum (1977), p. 24. “A concept of statistical evidence is not plausible unless it finds “strong

evidence for K as against H’ with small probability (¢) when H is true, and with much larger
probability (L— ) when K is true.” This paper was published after Birnbaum’s death in 1976.

16 See Stuart, Ord & Arnold, p.440.
7 Giere, p. 10.

18 See Buehler (1982), Cox (1988).
1% Royall, pp. 90-107.
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produce high power for conventional significance levels. This is not surprising since
it is a more ambitious aim; by making the power high and significance level low, we

control the probability of misleading evidence, but not weak evidence.

7.4 Where to for frequentist inference?

The contrast afforded by likelihood inference highlights again the shortcomings of
conventional frequentist inference when it comes to answering the question ‘Does this
data constitute strong evidence against H relative to K?* Does this mean that we must
either live with the consequences of these problems, completely unalleviated, or
abandon frequentism altogether in favour of a likelihood method? We have seen that
restricted conditioning, of the forms championed by Cox or Fisher, does nothing to
mitigate the problems that arise when we try to answer this question using the
frequentist approach; the characteristics of frequentist inferences carried out on the
sample spaces of sub-experiments (as usually defined) are no better (in any systematic
sense) than those that arise from applications to umbrella experiments. Nevertheless,
since unrestricted conditioning leads to the likelihood principle and methods
consistent with the likelihood principle are free of these problems, it is plausible that
some conditioning approach, short of unrestricted conditioning, may improve matters,
while still allowing us to retain the frequentist framework. In the rest of this work, we
show that it is possible to use Fisher/Cox conditioning in a way that is more fruitful
than its traditional application. The resulting exhaustive conditional inference is
wholly based on the frequentist approach and yet it is altogether free of some of the
failings associated with frequentism and greatly mitigates others. This approach
produces results that are radically different from conventional frequentist inferences

and, in important respects, much closer to likelihood inferences.
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