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Chapter 8: Exhaustive conditional inference for log-
symmetric models. 
 

8.1 Ancillary statistics for a binary parameter space. 

 

We were able to clarify the situation in Welch’s Uniform example by conditioning 

upon a statistic, ijA , that is ancillary for a binary parameter space { , }B i jθ θΘ ≡ .  This 

allowed us to identify some critically important features of the example and to make 

inferences much more sensible than those produced by, either, unconditional 

(‘optimal’) theory or conditioning on a variable ( R ) that is ancillary for the larger 

parameter space, \ .  A striking feature of this case is that the inference conditional 

on R , which is now standard, seems quite reasonable until we consider two simple 

hypotheses, at which point the flaws in the approach become apparent.  Given a 

binary parameter space, conditioning on ijA  satisfies all the requirements of the 

restricted conditionality principle advocated by Cox, and even that advocated by 

Fisher.  Such a principle does not lead to the likelihood principle when coupled with 

the sufficiency principle as Birnbaum’s unrestricted CP does.   

 

In this chapter and those that follow, we will look at what happens when we condition 

consistently on ancillary statistics of this type.  The fact that we are using a restricted 

form of CP means that we can remain within the general framework of frequentist 

inference, replacing the measures α , β  and p-value by their conditional counterparts 

which, by Cox’s argument, are more relevant to the question at issue.  Since our 

ancillary statistics must be functions of the MSS for BΘ , some statistics that are 

functions of the MSS for larger parameter spaces are ruled out of contention1; on the 

other hand, the requirement that the statistic have the same distribution for all θ  is 

                                                 
1 Let BΘ  be a binary parameter space, which is a proper subset of the larger space Θ , and suppose 

that S  is a MSS over Θ , then ( )Y LR X= , which is the MSS over BΘ , must be a function of S .  

Any (restricted) ancillary statistic over Θ  must be a function of S , but this does not guarantee that it 
will also be a function of Y .  If it is not, it will not be a candidate for the role of ancillary statistic over 

BΘ . 



 Chapter 8: E.C.I. for log-symmetric models. 

 177

less onerous for a binary parameter space than for a larger space; thus, some statistics 

that are not ancillary for larger spaces are ancillary for our purposes.  We will find 

that we are often able to identify ancillary statistics for all the binary subsets of the 

natural parameter space even in cases where no such statistic exists for the natural 

parameter space per se; thus the scope of our conditional inference is much wider.   

 

Fisher/Cox conditioning, based on large parameter spaces, usually produces results 

that are quite radically different from unconditional (optimal) inference; consider, for 

instance, Cox’s two-stage example and the difference between the 5% conditional and 

unconditional rejection regions (§4.3).  We might imagine that these new inferences 

might be (in some sense) closer to ‘likelihood’ inference, since the LP can be derived 

from the unrestricted CP, but this is not the case.  When isolated sub-experiments, of 

the type identified by Cox, are analysed by the usual frequentist methods, the 

inference can be every bit as inconsistent with the LP, or law of likelihood (LL), as an 

unconditional inference; in particular, even when the conditional significance level is 

low, there is no general upper bound on the value of the critical likelihood ratio.   This 

is true even when the restricted CP is extended to allow for conditioning on 

approximately ancillary statistics – a version that is less restrictive than Birnbaum’s 

CP2 regarding the distribution of the statistic.  We might infer from this that the 

difference between the two conditionality principles (whether or not the ancillary 

statistic is a function of the MSS) is critical and prevents any convergence of the 

methods.  However we will show that, when a binary parameter space is used, the 

restricted version of the CP produces results that are, in a meaningful way, more 

consistent with both the LP and the LL than any existing frequentist methods.  Thus, 

our approach occupies a position between frequentist and likelihood methods; 

although it is a frequentist method, constraints in terms of the likelihood ratio arise 

naturally from it. 

 

In this chapter we consider models with a particular type of symmetry property that 

enables us, not only to identify ancillary statistics for binary parameter spaces, but 

also to provide complete details of the inferential results that follow from conditioning 

upon them.  Since such statistics exist for all binary subsets of the natural parameter 
                                                 
2 Birnbaum’s ancillary statistic has exactly the same distribution for all θ , whereas an approximate 
ancillary statistic has a distribution that may vary slightly over θ . 
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space, it is also possible to define conditional confidence intervals (CCI) for the 

parameter of interest.  Inference on the mean of a Normal population where the 

variance is either known or can be estimated very reliably is among these cases; thus, 

inference about any θ  based on its maximum likelihood estimator comes under this 

heading as long as the sample is reasonably large and the mean and variance are 

functionally independent (in Chapter 10 we consider cases were the latter requirement 

is not met). 

 

Note that all p-values are one-sided since they are associated with a particular simple 

alternative hypothesis. If the observed value of the likelihood ratio statistic (i.e. the 

LR of the observed data) is 0y , then the conventional p-value of this data is 

0 0( ) ( )Hp y P Y y= ≤ , which is the smallest value of α  that could lead us to reject H on 

observing this data.  

 

8.2 Conditional inference on the mean of a Normal population. 

 

Weak and strong data identified by an ancillary statistic. 

 

In Example 3.2, we looked at a test of the hypotheses H: 0µ =  versus K: 3µ =  based 

on ~ ( ,1)T N µ .  We split the sample space, \ , into two regions: 

 1

2 1

[1.0, 2.0]
and \ .

τ
τ τ

≡
≡ \

 

 

The data in 1τ  provides weaker evidence regarding the two hypotheses than data in 

2τ .  The optimal 5% test is defined by the rule Reject H if t>1.645.  When we 

calculated the error probabilities of this test, conditional upon the data being weak 

( 1T τ∈ ), we found them to be 1 20.05%α = , and 1 47.78%β =  (compared with the 

unconditional values, 5%α = and 8.78%β = ), verifying the view that data in this 

range does not produce reliable results.   
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It is appropriate to condition on the event 1T τ∈  because it has the same probability 

under H as under K.  Our ancillary statistic is *A , defined by: 

 1

2

1,  
* *( )

2,  .
T

A A T
T

τ
τ

∈⎧
= = ⎨ ∈⎩

 

*A  is ancillary (in the restricted sense) for the binary parameter space {0,3}BΘ ≡  

since it has the same distribution Bµ∀ ∈Θ  and is a function of the MSS on BΘ , as 

follows. 

    

The MSS on any binary parameter space is the likelihood ratio statistic, ( )LR T .  In 

general, if 2~ ( , )T N µ σ , then for testing H: 1µ µ=  against K: 2µ µ= , the likelihood 

ratio is: 

 2

2

1 2

2 21
2 12

1
1 2

( )
2

( )( )
( )

exp{ [( ) ( ) ]}

exp{ [( )( )]},

where .

H

K

f tLR t
f t

t t

t
σ

σ

µ µ

µ µ

µ µ µ

µ +

=

= − − −

= − −

=

 

 

Thus any function of t  that is defined symmetrically around the value µ  is a function 

of the likelihood ratio.  In our example, 1.5µ =  and the sets 1τ  and 2τ , which define 

*A , are symmetric about this point, therefore *A  can be written in terms of the 

likelihood ratio (i.e. the MSS), as follows: 

 

 
1.5 1.51,  ( ) [ , ]

*
2,  otherwise.

LR t e e
A

−⎧ ∈
= ⎨

⎩
 

 

An equivalent two-stage experiment. 

 

We can use *A  to construct a notional two-stage experiment that has the same 

probabilistic structure as the experiment observing t .  
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STAGE 1. 

We take a single observation of the random variable, *A , observing a  to be either 1 

or 2.  This is an observation from the following distribution (that applies under both H 

and K).  

 

Table 8.1 

a  1 2 

( * )P A a=  0.1359 0.8641 

 

(Note that this distribution shows how likely we are to get weak or strong data.) 

 

 

 

STAGE 2. 

If 1a =  in stage 1, we observe the value of a random variable 1 [1.0, 2.0]T ∈  that has 

one of the densities shown in the following plot, under H and K (respectively). 

 

Figure 8.1 
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If 2a =  from stage 1, then we observe the value of a random variable 

2 \ [1.0, 2.0]T ∈\  that has one of the densities shown in the following plot. 
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Figure 8.2 
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The conventional inference, based on T , combines the distributions of 1T  and 2T  

using, as weights, the probabilities of the two possible values of a ; this combination 

is then used regardless of what the result of stage 1 (observed value of a ) actually 

was.  As argued in previous chapters, the alternative approach is to use only the 

observed value and distributions (under H and K) of the statistic that is observed in 

the second stage of the experiment.  This is more appropriate since the outcome of 

stage 1 is not directly informative about the test ( ( ) 1,LR a a= ∀ ), but 2T  is a more 

reliable statistic, for the test, than 1T  (so *A  is a precision index3), and the test result 

should reflect this fact. 

 

8.3 Defining an exhaustive ancillary statistic. 

 

The argument for conditioning on the strength of evidence is compelling, but we can 

derive different results from the same data if we partition the sample space of T  

differently; many such divisions will give rise to ancillary statistics.  Further, we can 

get a better picture of the accuracy of the stage 2 variable if we divide the sample 

space into more than two subsets while still maintaining the ancillarity.  The further 

away from µ  the data is, the stronger our information about which hypothesis is true.   

 
                                                 
3 Not necessarily the most discriminating precision index. 
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Therefore we define a new ancillary statistic: 

 

 ( ) | | .A G T T µ= = −  

 

A  is a continuous variable on +\  with a distribution that is the same under H and K, 

as can be deduced from the following plot4. 

 

Figure 8.3 

µ2µ1

0

t

|t- µ| H
K

 
 

A  is a function of the MSS, ( )LR T , as follows: 

 

 2

1 2| | | ln ( ) |A LR Tσ
µ µ−= ⋅ . 

 

The coefficient of | ln ( ) |LR T  is a positive constant for any given 2σ  and BΘ , and 

thus | ln ( ) |LR T  is also an ancillary statistic.  Since A  and | ln ( ) |LR T  are one-to-one 

functions of each other, they partition the sample space of T  in exactly the same way 

and, if we condition on the observed value of either variable, we will obtain the same 

results.  Any variable that is a function of A  is also ancillary, but, unless it is a one-

to-one function of A , it will be less informative.  *A  is an example of this, since  

 
1
2
1
2

1,  if 
*

2,  if .
A

A
A

≤⎧
= ⎨ >⎩

 

                                                 
4 I.e. check that (| | )P T cµ− <  is the same under H and K. 
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If we want to find the most relevant error probabilities of any particular test criterion, 

we should condition on the observed value of A .   

 

We call A  exhaustive because it possesses the following feature. 

 

 

A statistic, ( ), that is ancillary on a binary parameter space, is
 if it partitions the support of the likelihood ratio statistic, , 

into subsets, all of which contain exactly  value

A Y
exhaustive Y

two

= Ψ

s of , except for the 
subset { 1}. 

y
y =

 

 

This definition is motivated by the fact that any subsets produced by an ancillary 

partition of the likelihood ratio statistic must contain more than one value unless that 

value is 1y = .  It follows that subsets containing two elements are the smallest that 

can be produced.  Thus, an exhaustive ancillary statistic partitions the support of Y  

maximally with respect to the size of the subdivisions.  Since ancillary statistics that 

are one-to-one functions of each other create the same partitions, it follows that any 

one-to-one function of an exhaustive ancillary statistic (EAS) is also an EAS.  The 

statistic 2

1 2| | | ln |Yσ
µ µ− ⋅  is exhaustive since | ln |Y  is an EAS, as follows: | ln | 0Y a= >  

⇔  { , }a ay e e− +∈  and | ln | 0Y =  ⇔  1y = .  (From here on, we define A  as | ln |Y  for 

greater simplicity.) 

 

 

8.4 Conditional probability in the limit. 

 

A  is a continuous variable and hence ( ) 0,P A a a= = ∀ .  In order to condition upon 

the observed value of A , we must define the relevant conditional probability in the 

limit. 
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If the observed value of Y  is y  and ( )A Y= Ψ , then the observed value of A  is 

( )y aΨ = .  Let5 

 

 
0

0

( | ) lim ( ( , ] | ( ( ), ( )])

( ( , ])                    lim
( ( ( ), ( )])

P Y y A a P Y y y A y y

P Y y y
P A y y

ε

ε

ε ε

ε
ε

→

→

= = = ∈ − ∈ Ψ − Ψ

⎧ ⎫∈ −
= ⎨ ⎬∈ Ψ − Ψ⎩ ⎭

G

 

 

 

This definition is convenient, but it also makes sense for our purposes.  For any fixed 

0ε > , and i  in some set Iε , a discrete variable, say Aε , defined by 

 

 ,  if ( , ]A i A i iε ε= ∈ −  

 

is ancillary (since it is a function of A ) and we can gain information by conditioning 

upon it; this is unproblematic since Aε  is a discrete variable.  By making ε  smaller, 

we can get increasingly accurate information about the amount of evidence obtainable 

from the data; the greatest amount of information is in the limit as 0ε → , which is to 

say, as A Aε →  and Iε
+→\ .  Viewing A  as the limiting case of Aε , as 0ε → , 

provides the above definition of probability conditional upon A a= .  The symbol P
G

 

reminds us that this ‘probability’ is defined in the limit, although it will be 

indistinguishable from a conventional conditional probability derived from a discrete 

Aε  with sufficiently small ε . 

 

What features does a conventional z-test have, conditional on the observed value of 

A ?  In order to answer this question we need to derive the (limiting) conditional 

distribution of Y  given 0| ln |A y= .  

                                                 
5 We assume that the function ( )Ψ ⋅  is monotonic increasing on ( , ]y yε−  for suitably small ε . This 
is true for all the ancillary functions of Y LR=  considered in this and later chapters of this work as 
long as 1y < .  If 1y >  we will find that ( )Ψ ⋅ is a monotonic decreasing function in [ , )y y ε+  
allowing us to use the formula: 

0

0

lim ( [ , ))
( | )

lim ( ( ( ), ( )])

P Y y y
P Y y A a

P A y y
ε

ε

ε

ε
→

→

∈ +
= = =

∈ Ψ + Ψ

G
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8.5 Conditioning in the log-symmetric case. 

 

Definition of log-symmetry. 

 

Let Y  be the likelihood ratio of a random variable, T , with respect to simple 

hypotheses H and K.  If | ln |A Y=  has the same distribution under H and K, we say 

that the scenario is log-symmetric and it follows that A  is ancillary, in the restricted 

(Cox) sense, and exhaustive on the binary parameter space defining H and K.   

 

Conditional probabilities. 

 

Such a structure uniquely defines the conditional distributions (under H and K) of Y  

given | ln |A Y= , the details of which are derived below.  

 

When we condition on the observed value of A  ( 0 0| ln |a y= ), the conditional 

distribution of Y  given 0A a=  is (in the limit) dichotomous, that is, Y  may only take 

those two values ( 0y  and 1
0y− ) consistent with the observed 0a 6.  We need to derive 

the probabilities of these two values under both H and K. 

 

First, we derive some helpful relationships. 

 

The observed value of Y , 0y , may be greater than or less than one, i.e. in some cases 

the observed value will be the smaller of the two values consistent with 0a  and in 

other cases it will be the larger of the two values.  We cannot assume one way or the 

other without loss of generality, however we may distinguish between the two 

                                                 
6 That is, if 0| ln |Y a= , then lnY  must be either 0a−  or 0a+  and Y  must be either 0ae−  or 0ae+ .  

Since 0 0| ln |a y= , it follows that the only two values of Y  consistent with this value of A  are 

0exp{ | ln |}y−  and 0exp{ | ln |}y+  which are 0y  and 1
0y−  (not necessarily respectively). 
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elements of the conditional sample space, according to size, without making such an 

assumption; thus, let  

 

1
1 0 0

1 1
1 0 0

1
1 1

min{ , }

max{ , }

hence 1 .

y y y

y y y

y y

−

− −

−

=

⇒ =

< <

 

The observed value, 0y , will be sometimes 1y  and sometimes 1
1y− . 

 

Since A  has the same distribution under both hypotheses, then, letting Hf  and Kf  be 

the density functions7 of Y  under the respective hypotheses, and utilising the 

relationship between the density of A  and the density of Y , it follows that: 

 

 1 1 1 1
1 1 1 1 1 1 1 1( ) ( ) ( ) ( ).H H K Ky f y y f y y f y y f y− − − −+ = +  

 

We can use this, in combination with the fact that ( ) / ( )  ( )H Kf u f u u u= ∀ , to show 

that: 

 1 1 3
1 1 1 1 1 1(i) ( ) ( ) and (ii) ( ) ( ).H H K Kf y y f y f y y f y− −= =  

 

 

We want to find 1 0(   | ln |)P Y y given A y= =
G

, and since 0 1| ln | | ln |y y= , this is equal to: 

  

 

1 1 1 10

1 1

0
1 1

1 1
1 10

1 1 1 1

lim ({ }  {| ln( ) | | ln | | ln |})

({ })lim
({| ln( ) | | ln | | ln |})

({ })lim
({ }) ({ ( ) })

P y Y y given y Y y

P y Y y
P y Y y

P y Y y
P y Y y P y Y y

ε

ε

ε

ε ε

ε
ε

ε
ε ε

→

→

− −→

− < < − < <

⎧ ⎫− < <
= ⎨ ⎬− < <⎩ ⎭

⎧ ⎫− < <
= ⎨ ⎬− < < + < < −⎩ ⎭

 

 

We can divide the numerator and denominator by 0ε >  and hence write this 

expression as: 

 

                                                 
7 This derivation is constructed on the basis that Y  is a continuous variable, but note that the results are 
also valid for Y  discrete or partly discrete. 



 Chapter 8: E.C.I. for log-symmetric models. 

 187
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where F  is the distribution function of Y , and the density function, f , is its 

derivative. 

 

Let 1( ) ( )H u F u−= , then  

 

1 1
1 10

1 10

1
1 2

1 1

lim[{ (( ) ) ( )}/ ]

lim[{ ( ) ( )}/ ]
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( ) .

F y F y

H y H y
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ε

ε
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Thus, 

 
1 0

1
1 2

1 1 1

( | | ln |)
( )

( ) ( ) .

P Y y A y
f y

f y f y y− −

= =

=
+ ⋅

G

 

 

Using (i) and (ii) above, it follows that: 

 

 

1 0

1
1 2

1 1 1

1
2

1 1 1 1

1

1
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and 

 

1 0

1
1 2

1 1 1

1
3 2

1 1 1 1

1

( | | ln |)
( )

( ) ( )
( )

( ) ( )
1

(1 ).

K

K

K K

K

K K

P Y y A y
f y

f y f y y
f y

f y y f y y

y

− −

−
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=
+ ⋅

=
+ ⋅

=
+

G

 

 

Hence the distribution of Y  given that 0| ln |A y=  is that shown in Table 8.2. 

 

Table 8.2 

y  1
1 0 0min{ , }y y y−=  1 1

1 0 0max{ , }y y y− −=

( )HP y
G

 1

1(1 )
y

y+
 

1

1
(1 )y+

 

( )KP y
G

 
1

1
(1 )y+

 1

1(1 )
y

y+
 

 

Features of the conditional distributions. 

 

Some examples of the conditional distributions of Y  are as follows.   

 

If we observe data with a likelihood ratio of 1
3  (i.e. 1

0 3y = ) then we have also 

observed the variable A  taking the value ln 3 .  The distribution of Y  conditional 

upon ln 3A =  is: 

 

 

Table 8.3 

y  1
3  3  

( )HP y
G

 1
4  3

4  

( )KP y
G

 3
4  1

4  
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(Note that, as should be the case, Y  is the likelihood (probability) ratio for the 

conditional distributions as it was for the unconditional distributions.) 

 

In this case the conditional p-value of the observation 1
0 3y =  is 

1 1
3 4( | ln 3)HP Y A≤ = =

G
. 

 

On the other hand, if we observe data with a likelihood ratio of 10, the distribution of 

Y  given than ln10A =  is: 

 

 

Table 8.4 

y  1
10  10  

( )HP y
G

 1
11  10

11  

( )KP y
G

 10
11  1

11  

 

This gives a conditional p-value for the observation 0 10y =  of 

( 10 | ln10) 1HP Y A≤ = =
G

.   

 

Note that, when a  is larger, there is a greater difference between the (conditional) 

distributions of Y  under H and under K and this makes it easier to distinguish 

between the two hypotheses on the basis of y .  If, in the first case ( ln 3A = ) we used 

a rejection rule Reject H when 1
3y = , then the conditional significance level and 

probability of Type II error (  and )a aα β  are both 25%, whereas, in the second case 

( ln10A = ) the rule Reject H when 1
10y =  produces conditional error probabilities of 

9.09%.  For any 0| ln |a y= , and rule Reject H when 1y y=  the two conditional error 

probabilities are the same and equal 1 1/(1 ) 1/(1 )ay y e++ = + , which is a one-to-one 

function of a .  This shows that A  is a good precision index8. 

 

                                                 
8 It can also be argued directly from a likelihood perspective that | ln |Y  measures the ‘absolute 
(weight of) evidence’ in the data and is thus a ‘natural’ precision index. 
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It is clear that any value of y  greater than one has a conditional p-value of 100%.  

From a likelihood point of view, such a value indicates that the data is more consistent 

with H than K. 

 

We have identified the exhaustive ancillary statistic, | ln |Y , and derived the 

distributions of the minimal sufficient statistic, Y , conditional upon it.  In §8.6 we 

will use this to show that conventional inference on µ  has disturbing conditional 

properties before developing (in §8.7) an approach with better conditional features. 

 

 

8.6. Exhaustive conditional inference on the mean of a Normal 

population. 

 

The conventional and conditional significance levels of a standard 
z-test. 

 

We have shown that in Cox’s two-stage example and Welch’s Uniform example, the 

unconditional, ‘optimal’ test has conditional features (for instance, significance level) 

that vary depending on the value of the ancillary statistic.  In this section we look at 

the conventional inference on the mean of a Normal population (variance known) 

(popularly called ‘z-tests’) and assess the significance level and power of these tests 

conditional on the given value of the exhaustive ancillary statistic | ln |A Y= .  We will 

find that the conditional value of the significance level varies greatly, even a test with 

a nominal level of 5% producing conditional significance levels as high as 100%, and 

that these unreasonable levels correspond to cases where the usual interpretation of 

the standard test is intuitively wrong.   

 

Suppose 2~ ( , )T N µ σ  ( 2σ  known) and we test H: 1µ µ=  against K: 2µ µ= , then the 

optimal rejection rule for a significance level α  is:  
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 1 1 2 1

1 1 2 1

,   
Reject H when 

,   .
t z
t z

α

α

µ σ µ µ
µ σ µ µ

−

−

≤ − ⋅ <⎧
⎨ ≥ + ⋅ >⎩

 

 

 However the conditional significance level of this test, which is a function of 

0 0 0| ln | | ln ( ) |a y LR t= = , will usually not equal α .  In Cox’s example, the result of a 

coin toss dictates which of two Normal populations (same mean, different variance) is 

sampled from.  The unconditional test quotes a significance level that is the average of 

the two conditional significance levels associated with the different populations.  The 

same is true here, except that our ancillary statistic, | ln |A Y= , can take an infinite 

number of values rather than two.  A population of Y , associated with each value of 

0 0| ln |a y= , is described by the conditional distribution of Y  given 0A a= , shown 

again below. 

 
y  1

1 0 0min{ , }y y y−=  1 1
1 0 0max{ , }y y y− −=

( )HP y
G

 1

1(1 )
y

y+
 

1

1
(1 )y+

 

( )KP y
G

 
1

1
(1 )y+

 1

1(1 )
y

y+
 

 

(Where 1
1 11y y−< < .) 

 

This distribution can be written in terms of 0a  as: 

 

Table 8.5 

y  0
1

ay e−=  01
1

ay e+− =

( )HP y
G

 0

0(1 )

a

a

e
e

−

−+
 

0

1
(1 )ae−+

 

( )KP y
G

 
0

1
(1 )ae−+

 
0

0(1 )

a

a

e
e

−

−+
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The conventional, α -level, rejection rule (above) can be written in terms of y , 

instead of t , as follows: 

 1 2| |
12Reject H when exp{ ( 2 )} ( , ),  where .y z CLR µ µδ

α σδ δ α δ −
−< − = =  

 

The value 12( , ) exp{ ( 2 )}CLR zδ
αδ α δ −= −  is the critical likelihood ratio of the 

conventional α -level test and is dependent on 1µ , 2µ  and σ  only through the value 

of δ ; we will often abbreviated this to ‘CLR’ where its dependence on  and δ α  is 

understood.  The CLR is the cut-off point for the rejection region in terms of the 

likelihood ratio statistic, Y , instead of the natural variable T , hence 

( )HP Y CLRα = < 9.   

 

In order to calculate the conditional significance levels of the conventional test, we 

need to distinguish between three cases. 

 

i. 0
1  (i.e. )aCLR y CLR e−< <  

ii. 0 01
1 1  (i.e. )a ay CLR y e CLR e− +−≤ < ≤ <  

iii. 01
1  (i.e. )aCLR y CLR e+−≥ ≥ . 

 

The conditional significance level, 
0aα , is derived from the distribution of Y , 

conditional on 0a , by 
0 0( | )a HP Y CLR A aα = ≤ =

G
.  From the conditional distribution 

of Y , we can see that the three cases, above, give rise to different conditional 

significance levels as follows. 

 

i. 
0

0aα =  

ii. 
( )

0

0 0

1

11 (1 )

a

a a

y e
y e

α
−

−= =
+ +

 

iii. 
0

1aα = . 

 

                                                 
9 All NP tests are inherently left-sided when written in terms of the likelihood ratio statistic, Y .  
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For any given test (fixed values of α  and δ ), the expression 12z αδ −−  is fixed and 

must be either negative, zero, or positive.  In each of these instances, we can observe, 

at most, two of the above cases regarding the CLR since, for instance, if 12 0z αδ −− <  

then 1CLR <  and this rules out case iii.  We can derive the formulae for aα , for all 

possible cases, as shown in the table below. 

 

Table 8.6 

A: 12 1z CLRαδ −< ⇒ <  B: 

12 1z CLRαδ −= ⇒ =  

C: 12 1z CLRαδ −> ⇒ >  

0,             ln( )

,  ln( )
(1 )

a
a

a

a CLR
e a CLR

e
α −

−

< −⎧
⎪= ⎨ ≥ −⎪ +⎩

,  
(1 )

a

a a

e a
e

α
−

−= ∀
+

 
1,              ln( )

,  ln( )
(1 )

a
a

a

a CLR
e a CLR

e
α −

−

≤⎧
⎪= ⎨ >⎪ +⎩

 

(Where 1
1 0 0min( , )ae y y y− −= = .) 

 

The conventional significance level as an average. 

 

In Cox’s two-stage example it is easy to see that the nominal (i.e. unconditional) 

significance level of the optimal test is the average of the two conditional significance 

levels, which can also be thought of as the pre-experiment expected value of the 

conditional significance level, i.e. ( )AE α .  Our intuition is that the conditional 

significance level for the population that was actually observed is more relevant than 

the average value, which involves the population not observed. We will now show 

that the nominal level of the conventional z-test (α ) is the average of all the 

conditional significance levels, weighted by the distribution of the ancillary statistic 

| ln |A Y= , i.e. ( )AEα α= . 

 

In order to find the expected value of aα  over all possible values of a , we need to 

find the density of the random variable A .  Using the fact that | ln |A Y=  it can easily 

be established that 
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 2 2( ) ( ) ( ),   0a a
AF a aδ δ

δ δ= Φ + − Φ − >  

and hence that 

 

1
2 2

2 21 1 1
2 2 2 22

21 1
2 22

( ) [ ( ) ( )]

[exp( ( ) ) exp( ( ) )]

exp( ( ) )[1 exp( )].

a a
A

a a

a

f a

a

δ δ
δ δ δ

δ δ
δ δδ π

δ
δδ π

φ φ= + + −

= − + + − −

= − + +

 

 

The conventional significance level, α , is equal to the expected value of the random 

variable Aα , that is, ( ) ( )A a A
a

E f a daα α α= = ⋅∫ .  The proof of this is shown below for 

the case where 12z αδ −> .  The proofs for the two other cases are similar. 

 

Let 12z αδ −> , then 

 

21
2 2

21
2 2

21
2

[ln( ) ] ( 2 ) / 2

0 ( 2 ) / 2

( )

( 2 ) / 2

( )

( 2 ) / 2

( ) 1 ( ) ( )
(1 )

1 1[ ( ( 2 ) / 2)] (1 )
(1 ) 2

1[ ( ) ( )]
2

1[ ( ) ( )]
2

a

a

CLR z a

a A A Aa
a z

a
A a

z

z

u

ef a da f a da f a da
e

F z e e da
e

z z e da

z z e d

δ
δ

δ
δ

δ δ

δ δ

δ δ

δ δ

α

δ δ
δ π

δ
δ π

δ
π

= − ∞ −

−
−

∞
− +

−

∞
− +

−

−

⋅ = ⋅ +
+

= − + +
+

= Φ − − Φ +

= Φ − − Φ +

∫ ∫ ∫

∫

∫

1

[ ( ) ( )] [1 ( )]
1 ( )
1 (1 )

.

z

u

z z z
z

δ

α

δ δ

α
α

∞

−

−

= Φ − − Φ + − Φ −
= − Φ
= − −
=

∫

 

 

To illustrate this fact we will look at the conditional properties that apply to any 

standard 5% z-test with 4δ =  (for example, 1 20,  4,  1µ µ σ= = = ).  The value of 

1 0.952ln( ) ( 2 ) 2(4 2 )CLR z zδ
αδ −= − = − is 1.42 and, hence, the conditional significance 

level is: 

 
1,              1.42

,  1.42.
(1 )

a
a

a

a
e a

e
α −

−

≤⎧
⎪= ⎨ >⎪ +⎩
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The following plot shows aα  as a function of a . 

 

Figure 8.4 

6.004.503.001.420.00

100%

80%

60%

40%

20%

 0

a

α
the Normal mean with delta=4.
Alpha(a) vs 'a' for a conventional 5% test on

(a)

 
When a  is large, the likelihood of the data under one hypothesis is much larger than 

that under the other hypothesis, and the conditional significance level becomes 

increasingly close to zero (while the conditional power becomes increasingly close to 

100%) even though this is a 5% test; but when a  is small the conditional significance 

level is much larger than the nominal 5%.   

 

If 1.42a < , the conditional significance level is 100%.  We can examine the reason 

for this in terms of the original Normal random variable, T .   

 

Consider the right-sided test of H: 1µ µ=  versus K: 1 4µ µ σ= + .  The standard 5% 

rejection region for t  is 1[ 1.645 , )µ σ+ ∞ .  Consider the event 1.42A ≤ , this is 

equivalent to 1 11.645 2.355Tµ σ µ σ+ ≤ ≤ + .  If this ancillary event occurs, it is 

evident that the probability, under H, of rejecting H (the conditional significance 

level) is one since t  must be in the rejection region 1[ 1.645 , )µ σ+ ∞ .  Similarly, the 

conditional power of this test is one.  Since this is true when we condition upon 

1.42A ≤ , it must also be true if we condition upon A  being equal to any exact value 

in (0,1.42]  (since a significance level can never exceed one).  These details can be 

seen in the following plot.  Note that whenever | ln ( ) |LR t  is less than 1.42, t  is in the 

rejection region, i.e. t  is greater than 1 1.645µ σ+ . 
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Figure 8.5 

µ1−1.645σ µ1 µ1+1.645σ
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z-test with delta=4.
Plot of a=|ln LR(t)| versus t for any right-sided

 
 

This is similar to some of the anomalies that we encountered in the Uniform case.  

When the event (0,1.42]A∈  occurs, it tells us nothing about the question at issue 

because it has the same probability under both hypotheses, but, when it occurs, we 

will always reject H.  The fact that the (conditional) significance level is one shows 

that we can read nothing into this; on the other hand, the unconditional significance 

level of 5% tempts us to interpret this as evidence against H relative to K.  The 

unconditional significance level is an average value and, in this case, it is low only 

because of the contributions from those conditional significance levels associated with 

the unobserved cases where 1.42A >  (i.e. where the data is more informative than it 

is here).  This can be further illustrated by considering the distribution of Aα . 

 

Since Aα  is a function of A , it is itself a random variable.  The unconditional 

significance level of the conventional test remains α  no matter what data we observe, 

whereas the conditional significance level is obtained by conditioning on a , which is 

a function of the data.   

 

For the case 12z αδ −> , 2( 1) ( ( 2 )) ( ) (1 ) 0AP P A z zδα δ δ α= = < − = Φ − − − > , thus the 

random variable Aα  is partly discrete having a probability mass at the point ‘1’ but is 

continuous elsewhere with density: 
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1

( ) 2

21

2

1 ln( 1)( )
(1 ) 2

1 1 ln( 1) 1exp ,  0, .
2 2 (1 )(1 ) 2

A
uf u

u u

u u
CLRu u

α
δφ

δ δ

δ
δδ π

−

−

⎛ ⎞−
= ⋅ +⎜ ⎟− ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟= ⋅ − + ∈⎜ ⎟ ⎜ ⎟⎜ ⎟ +− ⎝ ⎠⎝ ⎠⎝ ⎠

 

 

 (NB: The density tends towards infinity as 0aα → .) 

 

In the plot below, we show the distribution of Aα  for the case 5%α = , 4δ = .  (The 

probability mass at 100%aα =  is shown by an area of that size so that the total area is 

one.) 

 

Figure 8.6 
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conventional 5% test with delta=4.
Density of alpha(A) for a

100%

 
 

The plot shows that the expected value of the random variable, Aα , is 5% – the 

nominal significance level of the test.  This value is influenced by both the outlying 

probability mass at 100%Aα =  and the very high densities associated with values of 

Aα  close to zero; in fact the probability that Aα  is close to 5% is quite low.   For any 

observed data, only one value of a  will have occurred, yet the conditional 

significance levels associated with every possible value of a  contribute to the 

conventional significance level.  Since a  contains no information about the question 

at issue, but indicates how informative our data is, it is wrong to allow the inference to 
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be affected by values of a  that did not occur.  The test result should reflect the 

information available to us. 

 

The conditional power of the conventional z-test. 

 

Since the conditional distribution of Y  given 0 0| ln |A a y= =  is as below (Table 8.2 

shown again): 

 
y  1

1 0 0min{ , }y y y−=  1 1
1 0 0max{ , }y y y− −=

( )HP y
G

 1

1(1 )
y

y+
 

1

1
(1 )y+

 

( )KP y
G

 
1

1
(1 )y+

 1

1(1 )
y

y+
 

 

and the conventional, α -level, rejection rule is: 

 1 2| |
12Reject H when exp{ ( 2 )} ( , ),  where y z CLR µ µδ

α σδ α δ δ −
−< − = = , 

 

we need to distinguish between the same three cases (below) in order to calculate the 

conditional power. 

i. 0
1  (i.e. )aCLR y CLR e−< <  

ii. 0 01
1 1  (i.e. )a ay CLR y e CLR e− +−≤ < ≤ <  

iii. 01
1  (i.e. )aCLR y CLR e+−≥ ≥ . 

 

The conditional power, 
0 0

1a aκ β= − (where aβ  is the probability of Type II error 

conditional upon A a= ), is derived from the distribution of Y , conditional on 0a , by 

0 0( | )a KP Y CLR A aκ = ≤ =
G

.  From the conditional distribution of Y , we can see that 

the three cases, above, give rise to different conditional power levels as follows. 
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i. 
0

0aκ =  

ii. 
( )0 0

1

1 1
1 (1 )a ay e

κ −= =
+ +

 

iii. 
0

1aκ = . 

 

Equivalently, 

i. 
0

1aβ =  

ii. 
( )

0

0 0

1

11 (1 )

a

a a

y e
y e

β
−

−= =
+ +

 

iii. 
0

0aβ = . 

 

Thus, if the data we observe is such that 0 01
1 1 (i.e. )a ay CLR y e CLR e− +−≤ < ≤ < , it 

follows that the conditional probability of Type II error is the same as the conditional 

probability of Type I error even when the unconditional error probabilities were not 

the same. 

 

The following table shows the conditional power results for any given test (fixed 

values of α  and δ ). 

 

Table 8.7 

A: 12 1z CLRαδ −< ⇒ <  B: 

12 1z CLRαδ −= ⇒ =  

C: 12 1z CLRαδ −> ⇒ >  

0,             ln( )
1 ,  ln( )

(1 )
a

a

a CLR

a CLR
e

κ
−

< −⎧
⎪= ⎨ ≥ −⎪ +⎩

1 ,  
(1 )a a a

e
κ −= ∀

+
 1,              ln( )

1 ,  ln( )
(1 )

a
a

a CLR

a CLR
e

κ
−

≤⎧
⎪= ⎨ >⎪ +⎩

 

 

These results are summarised in the table below, which gives the conditional error 

probabilities of both kinds for any fixed α -level z-test. 
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Table 8.8 

 aα  aβ  

(i) 12z αδ −<  & ln( )a CLR< −  

[Equivalent to: CLR<1 & | ln( ) |a CLR< .]

0 1 

(ii) 12z αδ −>  & ln( )a CLR<  

[Equivalent to: CLR>1 & | ln( ) |a CLR< .]

1 0 

 

(iii) Otherwise [i.e. | ln( ) |a CLR> ]. 1

a

a

e
e

−

−+ 1

a

a

e
e

−

−+

 

 

The error probabilities are non-trivial, and the test meaningful, only when 

| ln |a CLR> .  Since large values of a  indicate that we have more informative data, 

this makes sense.  Also note that 1
1 1

a

a a
e
e e

−

−+ +
=  is a decreasing function of a , and hence 

the conditional error probabilities become smaller and the test more reliable as a  

increases.  The two extreme cases, (i) and (ii), occur when | ln | | ln |a y CLR= < .  In 

terms of the Normal variate, t , this is equivalent to the requirement: 

1| |t d z αµ σ−− < = ⋅ ; thus, t  is ‘close’ to µ  (the point half-way between the two 

values) indicating ‘weak’ data, and the ancillary set { :| | }t t dµ− <  is either wholly 

within the α -level rejection region (case (ii) when the hypotheses are relatively far 

apart so that all the weakest observations are in the rejection region) or wholly outside 

the rejection region (case (i) when the hypotheses are close together so that all the 

weakest data is outside the rejection region).  The conditional error probabilities give 

a more accurate account of the reliability of the test result than the conventional error 

probabilities. 

 

Conditional p-values and conventional p-values. 

 

In this section, we show that for tests on the Normal mean (σ  known or accurately 

estimable) the p-value, conditional upon the observed value of the ancillary statistic 

| ln |A Y= , is greater than the conventional p-value no matter what the data, 

hypotheses, or value of σ .   
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Let 2~ ( , )T N µ σ  where 2σ  is known.  Let the data be t ∈\  and the binary 

parameter space 2
1 2{ , }B µ µΘ ≡ ∈\  1 2( )µ µ≠ , and σ +∈\ ; H states that 1µ µ=  

while K states that 2µ µ= . 

 

Then, 2
2 21

2 12
( ) exp{ [( ) ( ) ]}y LR t t t

σ
µ µ += = − − − ∈\ .   

 

The conventional p-value is: 

 
1

1

2 1

2 1

( ),       
p-value( )=

1 ( ),  .

t

t
t

µ
σ

µ
σ

µ µ

µ µ

−

−

⎧Φ <⎪
⎨

− Φ >⎪⎩
 

 

This can be written in terms of y  as: 

 1( ) (ln / 2),p y yδ δ δ−= Φ ⋅ −  

dependent on 1 2| | .µ µ
σδ −=  

 

Denote by ‘ ( )cp y ’ the p-value of y  conditional upon | ln |A a y= = , i.e. 

( ) ( | | ln |)Hcp y P Y y A y= ≤ =
G

.  From the conditional distribution of Y  given 

| ln |A a y= =  (see Table 8.2), it follows that: 

 
100%,     1

( )
,   1.

(1 )

y
cp y y y

y

≥⎧
⎪= ⎨ <⎪ +⎩

 

 

 

When 1y ≥ 10 (i.e. t  is closer to 1µ  than to 2µ ), ( ) 100%cp y =  since the observed 

value of Y  is the larger of the two possible values consistent with observing A a= .  

On the other hand, ( δ∀ ) the conventional p-value, ( )p yδ , goes to 100% only as 

y → ∞ , hence ( ) ( )cp y p yδ> whenever 1y >  (finite).  In order to show that this is 

also true when 1y < , we need to take into account the different possible values of δ .   

                                                 
10 When 1y = , 1y y− =  thus the conditional distribution contains only the observed value and 

(conditionally) ( ) ( ) 1P Y y P Y y≤ = = =
G G

.  Where Y  is a continuous variable (unconditionally), 
there is no need to distinguish between 1y <  and 1y ≤  since ( 1) 0P Y = = . 
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First, fix y  as any arbitrary value less than one and regard ( )p yδ  as ( )g δ : a function 

of δ +∈\ . 

 

1 2 1
2

0

( ) (ln / 2) (ln )

0,  if and only if 2 ln .

d g y y
d

y

δ φ δ δ δ
δ

δ δ

− −= − ⋅ − × ⋅ +

= = = −
 

 

It can easily be shown that 
0

2
0

2
0

( )( ) | 0d g
d δ δ

φ δδ
δ δ=

− −
= <  and hence g  has a unique 

maximum at 0δ δ= , i.e. max ( ) ( 2 ln ) ( 2 ln )g g y y
δ

δ = − = Φ − − . 

 

Thus, for any 1y < , ( ) ( 2 ln )p y yδ ≤ Φ − −  ( δ∀ ); we may call ( 2 ln )yΦ − −  

'UB( ) 'y  to indicate that it is, for all δ , an upper bound on the conventional p-value, 

( )p y .  

 

When 1y < , the conditional p-value is ( ) /(1 )cp y y y= + .  From the following plot it is 

clear that UB( ) ( ), 1y cp y y< ∀ < , and hence it follows that ( ) ( ), ,p y cp y yδ δ< ∀ . 

 

Figure 8.7 
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Normal location case: Comparison of
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Note that ( ) 5%cp y ≤  only when 1

19 0.053y ≤ ≈  whereas the upper bound has values 

under 5% for a wider range of y -values.  Since it is an upper bound, the p-values 
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themselves are generally lower and thus significant for even more values of y .   

Unlike the cp-value, the p-value of y  varies with the value of δ ; the following plot 

shows ( )p yδ  for several values of δ  in the range 0.2 to 2.0. 

 

Figure 8.8 
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We noted earlier that there is a particular tendency for conventional tests to reject H 

unreasonably when the two hypotheses are far apart, i.e. when δ  is large.  The 

following plot illustrates this point. 

 

Figure 8.9 
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Since 2( ) ( )p y δ

δ
−→ Φ  as 1y → , and 2( ) 0δ−Φ →  as δ → ∞ , it follows that y  can be 

close to one and still have a small p-value when δ  is large; in the plot above, the p- 
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values of 0.99999y =  are less than 5% in all four cases.  From a likelihood point of 

view, such data is almost exactly neutral regarding the two hypotheses; the 

conditional p-value ( 0.99999
1.99999 49.99975%= ) is consistent with this view unlike the 

conventional p-values.  When we condition on | ln(0.99999) |A = , we reduce the 

sample space to one containing only two outcomes, 0.99999y =  and 10.99999y −= , 

both of which are in almost equal agreement with the two hypotheses; in such a 

situation, the failure rate of any rule allowing us to reject H is high and the conditional 

p-value reflects this fact. 

 

Close hypotheses. 

 

When the hypotheses are far apart the conventional method gives strange results, 

rejecting H when the LR is very large and the data is far more consistent with H than 

with K.  This is especially disturbing since these tests have very high power and so 

appear to be reliable.  However, there are also problems when the hypotheses are 

close together.  In such a case there is very little difference between the distribution of 

T  under the two hypotheses and, thus, observing t  is not a good basis for choosing 

between the hypotheses – no data amounts to strong evidence one way or the other.  

For some models, the likelihood ratio is strictly bounded in such circumstances.  For 

the Normal location model, the likelihood ratio theoretically takes values in the range 

(0, )∞  in all cases, however if we put realistic bounds on t , these will flow through to 

the likelihood ratio. 

 

 

Example 8.1. 

 

Consider ~ ( ,1)T N µ  and suppose we want to test H: 0µ =  against K: 0.2µ = .  The 

hypothesised values are one-fifth of a standard deviation apart. 
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Figure 8.10 
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Consider all possible data lying within five standard deviations of either of the 

hypothesised means, i.e. [ 5.0, 5.2]t ∈ − + .  Clearly the two distributions are very alike; 

T  behaves in much the same way under either hypothesis.  The poor design of this 

test is reflected in the low power; however, this does not prevent us from observing 

data (in this range) that has a very small p-value.  Any 1.645t >  has a p-value less 

than 5%.  Thus we may easily reject H in favour of K.   

 

The likelihood ratio bears out our intuition that none of this data is convincing in 

either direction. 

 

Figure 8.11 
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The likelihood ratio lies within the range 1
2.77[ , 2.77]  – none of the data in this range 

favours one hypothesis over the other to the extent that the outcome hh favours the 

double-headed hypothesis over the fair coin hypothesis.  It seems wrong that we can 

observe p-values that are very close to zero in such a case.   

 

Compare the p-value with the cp-value.  When 1y <  (i.e. 0.1t > ) the cp-value is 

(1 )
y
y+ .  Since y  is never less than 1

2.77 , the cp-value is similarly bounded below and is 

greater than 26.5% for all data in this range (see below). 

 

 

Figure 8.12 
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 The conventional test is quite inadequate at responding to the challenges of this 

situation.  The low power indicates that the experiment is not very likely to produce 

data that rejects H in favour of K, even if K is true.  It follows that we can infer 

nothing from a failure to reject H.  However this fact becomes irrelevant (except as a 

criticism of the design of the experiment) if we do, in fact, reject H, and we are able to 

do so surprisingly easily, based on data that is close to neutral for these hypotheses 

( 1
1.362LR ≤ , for p-value 5%≤ ). 
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An examination of standard tests on composite hypotheses. 

 

In Chapter 3, we looked at tests of a simple null hypothesis and a composite 

alternative hypothesis, and asked whether rejection of the null hypothesis necessarily 

implies that the data is much more consistent with some component of the composite 

alternative than with the null hypothesis.  According to likelihood theory, the answer 

is no (see Chapter 7). What answer does our conditional approach produce?  Consider 

the following case (modified from Example 3.1). 

 

Example 8.2. 

 

1 16, ,X X…  are independent and identically distributed 2( ,8 )N µ  variables.  We want 

to test H: 163µ =  versus K: 163µ > , with data 166.3x = .  Since 2~ ( , 2 )X N µ , this 

data has a conventional p-value of 166.3 163
21 ( ) 4.95%−− Φ ≈ , and we can reject H at the 

5% level.  

 

Although this is significant, it is obvious that the data is more consistent with the 

hypothesis H than with (say) the hypothesis 180µ = , which is a component of the 

composite hypothesis K.  Clearly the strength of evidence against H relative to any 

given component of K is very varied.  Is there some component of K that the evidence 

in the data strongly favours relative to H?  

 

Since this is a Normal location test, we can use the conditional results for log-

symmetric models.  The values of 1 163µ =  and 8σ =  are fixed, as is 166.3x =  

(called t  in the general theory).  When we consider different components of K, we are 

allowing 2µ  to vary within the domain (163, )∞ .  Since (1 )( ) y
ycp y +=  is a monotone 

increasing function of the likelihood ratio ( y ), it is smallest and most ‘significant’ 

when the LR is smallest.  The LR varies depending on the value of 2µ  and it is easy 

to show that it takes the smallest value when 2 166.3xµ = = .  When 2 166.3µ = , the 

LR value of the data is 0.25634y = .  This value is greater than ¼  so Royall would 

not regard it as significant – the evidence is less strong than that from data hh in the 
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paradigm coin tossing case.  The cp-value is 0.25634
1.25634 20.4%=  which is far from 

significant.  A test of H against any other component of K will produce a larger cp-

value (and LR) than the one calculated here.  On the basis of either the LR or the cp-

value, we can say that the evidence from the data 166.3x =  does not justify rejecting 

H: 163µ =  in favour of any hypothesis nominating a larger value of µ ; in particular, 

all such tests will produce a cp-value of at least 20.4%. 

 

If the data were further away from 1µ , the result would be different.  How far away 

must it be in order that the cp-value, relative to some component of K, is significant?   

 

Let 2~ ( , )T N µ σ , and we observe data t .  Whenever t  is on the side of 1µ  other 

than that defined by K, it follows that, for all components of K, ( ) 1y LR t= >  and 

( ) 100%cp y = ; only when this is not the case is there any possibility of obtaining 

conditionally significant results.  

 

In view of this, let H: 1µ µ=  and let K be defined as follows: 

 1 1

1 1

,  if 
K:

,  if .
t
t

µ µ µ
µ µ µ

> >⎧
⎨ < <⎩

 

 

Over the components of K, the minimum LR occurs at 2 tµ = , hence 

 
2

1 1
min 2

( ; ) ( )min ( ) exp
( ; ) 2iK

f t ty LR t
f t t

µ µ
σ

⎧ ⎫− −
= = = ⎨ ⎬

⎩ ⎭
. 

 

For a test of H: 1µ µ=  against Kt: tµ = , the cp-value is smallest and is equal to 

 
12

1
min 2

( )min  cp-value( ) ( ) exp 1 .
2iK

tt cp y µ
σ

−
⎡ ⎤⎧ ⎫−

= = +⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

 

 

The cp-value is only significant for any component of K if it is significant for the 

particular component Kt and for this to be true we need to have 

 
12

1
2

( ):  exp 1
2

tt µ γ
σ

−
⎡ ⎤⎧ ⎫−

+ ≤⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

, 
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where γ  is some appropriately small value such as 5%, defining a significantly small 

cp-value. 

 

This inequality holds only when  

 11| | 2 ln( )t γ
γ

µ
σ

−−
≥  

(subject to t  being on the side of 1µ  specified by K).  The conventional p-value of t  

can be written as: ( )1| |p-value( ) tt µ
σ

− −= Φ , and hence the above inequation can be 

written as:  

  

 
( )

11

1

(p-value( )) 2 ln( )

p-value( ) 2 ln( ) .

t

t

γ
γ

γ
γ

−−

−

−Φ ≥

⇒ ≤ Φ −
 

 

The following plot shows this relationship; ‘ max ( )p t ’ denotes the right hand side of 

the inequality. 

 

Figure 8.13 
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Only when the conventional p-value is less than 0.76%, is the cp-value under 5% for 

the test of H versus Kt; it follows that whenever p-value( ) 0.76%t > , there is no 

component of K for which the cp-value of the data is less than 5%.   
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This fact also gives us a general result for tests of two simple hypotheses on the 

Normal mean.  Whenever the conventional p-value of an observation is greater than 

0.76%, it follows that no conditional test of the null hypothesis against any simple 

alternative hypothesis will deliver a cp-value less than 5%.  (More generally, 

whenever the conventional p-value of an observation is greater than ( )12 ln( )γ
γ
−Φ − , 

it follows that no conditional test of the null hypothesis against any simple alternative 

hypothesis will deliver a cp-value less than γ .) 

 

Even when the p-value is less than 0.76%, it is still misleading to quote the result of a 

test with a composite alternative as, for instance, ‘Reject H: 0µ =  in favour of 

K: 0µ > ’ since this does not identify which of the components of K produce 

significant results and which do not.  If ~ ( ,1)T N µ  and we want to test H: 0µ =  

against K: 0µ > , the data 2.6t =  has a conventional p-value of 0.466%.  Since this is 

less than 0.76%, we know that the cp-value will be less than 5% for some components 

of K.  The plot below shows the cp-values for alternatives in the range (0,5]. 

 

Figure 8.14 
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Against the alternative 2 2.6µ = , the data has a cp-value of 3.3%, and for any 

alternative value of µ  in the range (1.6, 3.6) the cp-value is 5% or less, but for some 

values outside this range the cp-value is very high.  Any reasonable summary of the 

significance of the observation 2.6t =  to the null hypothesis should distinguish 

between these cases. 
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8.7 Creating hypothesis tests with good conditional 

properties. 

 

We have examined the conventional z-test from a conditional point of view, using the 

statistic | ln |A Y=  which is ancillary, in the restricted sense, on the general binary 

parameter space 1 2( , )µ µ .  Although the z-test is widely used, and generally 

considered unproblematic, our conditional analyses reveal that the conditional error 

probabilities of (say) a 5% test can be appallingly high, and these cases correspond to 

those where tests of simple hypotheses produce intuitively unpalatable results (see 

Chapter 3).  It is clear that A  is an effective precision index and can be used to 

discriminate between more and less informative data. 

 

In this section, we use A  to construct a new test that has acceptable conditional 

properties; this approach is applicable to all log-symmetric scenarios.  We then 

compare the structure of this test, and its associated confidence intervals, with that of 

the standard z-test and z-intervals.  We find that the new test possesses some striking 

features more usually associated with a non-frequentist approach and produces results 

that are much more intuitively reasonable than the standard results. 

 

A bound on the conditional significance level. 

 

For any fixed test criterion (rejection region), the conditional significance level (and 

power) of the test depends on the value of | ln |A Y=  observed, thus the relevant 

conditional significance level of the test can not be known until after the experiment 

has been performed, in contrast to the unconditional (i.e. average) error probabilities.  

Since the conditional distributions are discrete, we cannot make all the conditional 

significance levels equal without introducing a randomising variable and breaching 

the sufficiency principle.  However, we can, if we wish, define a rejection rule that 

puts an upper bound, 100%α < , on all the possible values of aα .   
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Consider a rule of the form: reject H in favour of K when y k≤ .  First note that if 

1k > , there will be some observable a  such that 100%aα =  because both values of 

y  ( 1y  and 1
1y− ) associated with a  are in the rejection region (since 1

11 y k−< < ); thus 

we must choose 1k < .  If neither value of y , associated with a , is in the rejection 

region, then 0aα α= <  and this is acceptable.  There remain the cases where the 

smaller value of y  ( 1 1ay e−= < ) is in the rejection region and the larger value is not.  

In such a case the conditional significance level is 1

1(1 )
y

a yα +=  and this is less than or 

equal to α  if and only if 1 1y α
α−≤ .   

 

Hence, the rule 

 1Reject H in favour of K when y k α
α−≤ =  

has conditional significance levels ( )aα  that are less than or equal to α  for all a .   

 

If we want to ensure that the relevant (i.e. conditional) significance level cannot 

exceed (say) 5%, then the rule reject H in favour of K when 1
19y ≤  is appropriate.  

Since the rule rejects H when the likelihood ratio is smaller than a certain value, the 

test produces the highest conditional power that can be associated with the observed 

conditional significance level ( )a∀ , i.e. Neyman-Pearson optimality applies 

conditionally (as Welch pointed out in 1939). 

 

The relevant significance level. 

 

Even though we may define a rule determined by an upper bound on the conditional 

significance levels, it is important to recognise that it is the conditional significance 

level for the observed value of a  (say, 0a ) that is the relevant Type I error probability 

for the test.  This is because 
0aα  is the error probability for, as it were, ‘the machine 

that was actually used’ in the experiment.  The value, α , allows us to identify 

significant values of y  before the experiment is performed, but, for making an after-

experiment inference, it is the value aα  that is important.  For example, if the 
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experiment produces data, 1
0 0 0 32: ( )x y LR x= =
� �

, it is immediately obvious that we can 

reject H using 5%α = , since 1 1
32 19< , and so 

0
5%aα < .  From the conditional 

distribution of Y  given 0| ln |A y=  (shown below), it is clear that the relevant 

significance level of the test is 
0

1
33 3.03%aα = =  where 1

0 32| ln |a =  was the observed 

value of A . 

 

Distribution of 1
32 given that | ln | .Y A =  

Table 8.9 

y  1
32  32 

( )HP Y y=
G

 1
33  32

33  

 

0

1 1 1 1
019 32 32 33( | ) ( | | ln |)a H HP Y A a P Y Aα⇒ = ≤ = = = = =

G G
. 

 

(The distinction between 
0aα  and α  ought not to be identified with the distinction 

between the p-value ( )x  and α , in conventional tests.  In this case 
0aα  is a genuine 

significance level, as discussed below.) 

 

The relevant significance level and the cp-value. 

 

What is the relationship between the relevant significance level and the cp-value of 

the data?  Like the cp-value, the relevant significance level, 
0aα , is a function of the 

data; in this it differs from the unconditional α  which depends only on the rejection 

rule.  Unlike the cp-value, it depends on the data only through the ancillary statistic, 

A , that is, 
0aα  depends on the rejection rule and on which ‘machine’ was used in the 

sub-experiment (the latter outcome being part of the experimental result).  However, 

when | ln |A Y= , the following relation holds:  

 
0

1

0 0

Whenever we use a test of the form 'Reject H when '  
and the data is such that ( ) 1,  then ( ) .a

y
cp y cp y

α
α

α α
−≤

≤ < =
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In other words, if the observed value, 0y , is significant, relative to some rule that 

precludes conditional significance levels of 100%, then the distinction between the 

conditional p-value of the data and the conditional (relevant11) significance level of 

the test vanishes – they are the same.  This relation holds because of the exhaustive 

nature of the ancillary statistic, | ln |A Y= , specifically, the fact that A  partitions the 

sample space of Y  into sets each containing only two values of Y  ( 1( )y a  and 

1
1[ ( )]y a − ) either side of one.  Cox’s conditional example12 (for instance) does not 

possess this property.   

 

Using the relevant significance level to rank the strength of 
evidence. 

 

In unconditional inference, the p-value of the data is sometimes preferred to the 

accept/reject result (based on the pre-determined significance level) because it 

interprets the data in a more refined way.  For example, when 1σ = , a 5% right-sided 

z-test of H: 0µ = , will reject H whenever 1.645t > .  The results 3t =  and 5t =  both 

lead us to reject H at this level, however, the latter result seems like stronger evidence 

against H than the former – a fact reflected by their p-values (and, for this reason, the 

p-value is sometimes vaguely interpreted as a measure of evidence of some kind).  On 

the other hand, the p-value cannot be interpreted as a long-run success rate associated 

(purely) with the method, since it depends on the data that was observed in a 

particular performance of the experiment, unlike the figure ‘5%’.  Contrast this with 

the relevant significance level.  Consider the case H: 0µ =  versus K: 5µ =  ( 1σ = ) 

where 5t =  appears to be stronger evidence against H than 3t = .  If we let 10%α = , 

then we will reject H when the likelihood ratio, y , is less than 0.111.  The likelihood 

ratios of the observations are: 0 0.082y = , when 0 3t = , and 6
0 3.73 10y −= × , when 

0 5t = .  Thus both observations would lead us to reject H based on 10%α = .  

However, the two observations are associated with different values of 0 0| ln |a y=  (i.e. 

                                                 
11 ‘Relevant’ meaning that the value of A  conditioned upon is that actually observed in the 
experiment. 
12 Cox (1958). 
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different ‘machines’) and hence the relevant significance level of the test is different 

when 3t =  than when 5t = .  Since both values are in the rejection region we know 

that the respective significance levels are equivalent to the cp-values where 
0

00 (1 )( ) y
ycp y += , hence when 0 3t =  ( 0 2.5a = ), 

0
7.59%aα = , and when 0 5t =  

( 0 12.5a = ), 
0

4(3.7 10 )%aα −= × .  The value, 
0aα , indicates the long-run error rate for 

rejecting H, when H is true, assuming that we use the same rejection rule and the 

value of A  is the same as that observed here.  This can be thought of as the Type I 

error probability associated with the machine we actually used and it depends on the 

data only in so far as we count the choice of machine as part of the data.  The two 

values 3t =  and 5t =  are associated with different values of 
0aα  because they were 

produced by different machines; specifically, 5t =  was produced by a machine that is 

better at distinguishing between H and K and produces smaller (non-trivial) error 

probabilities than the machine that produced 3t = .  This allows us to interpret the 

difference between the significance of 3t =  and 5t =  by reference to genuine error 

probabilities and we can see that 5t =  is indeed more significant, at least, in the sense 

of being a significant outcome associated with a more rigorous test.   

 

So far we are in agreement with the conventional view that 5t =  is the more 

significant of the two results13, however note that the values quoted for the relevant 

significance levels are substantially different from the conventional p-values.   

 

Table 8.10 

0t  p-value 0( )t  
0aα  

3 0.10% 7.59% 

5 5(2.87 10 )%−×  4(3.7 10 )%−×

 

Although the conventional p-value ranks the data in the right order (in terms of 

strength of evidence) it does not accurately assess what that strength is.  This is 

because the p-value is the mean of a number of values, most of which are irrelevant 

and smaller than the cp-value (see §8.11).  When we make proper allowance for the 

                                                 
13 This is also consistent with a likelihood interpretation since (5) (3)LR LR< . 
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ancillary set in which the data, 3t = , lies, it is apparent that the rejection rule we are 

using has a failure rate (H being true) of over 7%, whereas (for all 2 0µ > ) the 

conventional p-value of the data is 0.1%.  The job of ranking the data, for which the 

p-value is valued, is much better performed by the relevant conditional significance 

level. 

 

The cp-value and the likelihood ratio. 

 

In earlier chapters we noted that in conventional tests, including z-tests, a small 

significance level does not imply that the critical likelihood ratio (CLR) of the test is 

small, nor does a small p-value imply that the likelihood ratio of the data is small.  A 

conventional significance level, such as 5%, may produce a CLR anywhere in +\ , 

depending on the model and hypotheses.  Similarly, an observation may have a large 

likelihood ratio, even much greater than one, and still have a significantly small p-

value.  The only general connection between the likelihood ratio and significance 

measures is the following (where H and K are simple hypotheses). 

 ( )
( )With respect to any null hypothesis, H, p-value( ) ( ) ,  K.H

K

p x
P xx LR x< = ∀  

  

This ensures that, as long as the LR is sufficiently small (for some K), the 

conventional p-value will be significantly small, but not vice versa.  A small p-value 

is a necessary but not a sufficient condition for the existence of a small likelihood 

ratio (for some alternative hypothesis). 

 

However, when we look at the conditional approach using the ancillary statistic 

| ln |Y , the relationship changes to the following. 

 
( ) ,   ( ) 1

(1 ( ))For all H, K and , cp-value( )=
100%,             ( ) 1.

LR x LR x
LR xx x

LR x

⎧ <⎪ +⎨
⎪ ≥⎩

 

 

Thus, the cp-value is a function of the likelihood ratio of the data and this function is 

the same across all model/hypothesis combinations that are log-symmetric.  In  
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particular it holds for all tests on the Normal mean ( 2σ known) regardless of the 

hypotheses or variance.  Moreover, this relationship is one-to-one over those values 

where the ( ) [0,1)LR x ∈ .  Within the log-symmetric class of models/hypotheses, any 

two observations with the same likelihood ratio will also have the same cp-value.  

This is a localised version of the likelihood principle14.  If an experiment, 1E , 

produces data 1x  for testing H1 versus K1, and, an experiment, 2E , produces data 2x  

for testing H2 versus K2, and 1 1 2 2( ) ( )LR x LR x= , then the LP states that 1x  is evidence 

for H1 relative to K1 to exactly the same degree that 2x  is evidence for H2 relative to 

K2 .  We have shown that, in such a case, as long as 1 1 1( , H , K )E  and 2 2 2( , H , K )E  are 

both members of the log-symmetric class, the 1 1cp-value ( )x  and 2 2cp-value ( )x  are the 

same and the conditional interpretation of the two results with be the same.  The 

converse is also true as long as the ( ) 1 ( 1,2)i iLR x i< = , i.e. identical cp-values imply 

identical likelihood ratios.   

 

 

Any reasonable (i.e. 1α < ) construction of a rejection region in terms of the cp-

value ( )x  can be re-written in terms of ( )LR x , and this translation is the same in all 

log-symmetric cases.  For instance, the regions { :  cp-value( ) }x x α≤
� �

 and 

1{ : ( ) }x LR x α
α−≤

� �
 are equivalent to each other.  Thus, in the log-symmetric scenario, 

any α  bounded conditional test ( 1α < ) is equivalent to the dichotomous likelihood 

test where 1
1

α
λ α−= .   Furthermore, cp-values in the significant range roughly 

correspond to likelihood ratios also in the significant range (see plot below). 

There is no conflict between the interpretation of y  directly (as a likelihood ratio) and 

through ( )cp y . 

  

                                                 
14 The real LP is not restricted to any locale – that is a big part of its force.  However, the result given 
here still represents a big change by comparison with conventional z-tests, which are only likelihood-
consistent across a class of cases where 1 2| |µ µ

σ
−  is constant.  In contrast, our tests are consistent across 

all Normal location scenarios and even beyond. 
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Figure 8.15 
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The fact that only data with a likelihood ratio of less than one can possibly produce a 

significant result for rejecting H in favour of K, and that only data with a likelihood 

ratio15 of more than one can possibly cause us to reject K (as null hypothesis) in 

favour of H (as alternative), can be seen as agreeing with that part of the Law of 

Likelihood which states that, when the likelihood ratio is one, the evidence is neutral 

between the two hypotheses.  This contrasts greatly with unconditional inference 

where data with a LR of one may be seen as providing strong evidence against one 

hypothesis relative to another if it has a small p-value. 

 

If all model/hypothesis-pair scenarios in existence were log-symmetric (which they 

are not), it would follow that we could satisfy both the LL and the LP by carrying out 

frequentist inferences conditional upon | ln |A Y= .  Even the case where 1y >  and the 

cp-value is not a one-to-one function of the LR, could be dealt with by testing K (as 

null hypothesis) versus H. 

 

 

 

                                                 
15 Still meaning H

K

p
p . 
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Rejection areas in the (H,K)-plane. 

 

We can illuminate the differences between the conventional and conditional 

approaches to the Normal location case by observing the areas in the 1 2( , )µ µ -plane 

where H: 1µ µ=  is rejected in favour of K: 2µ µ= , based on the data x  (we use 

1σ = ).  We look first at the conventional 5% test. 

 

Figure 8.16 
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The main diagonal shows where 1 2µ µ= ; we are only interested in values of 1 2( , )µ µ  

not on this line.  The areas labelled ‘Reject H’ indicate the values of 1 2( , )µ µ  for 

which the hypothesis 1µ µ=  (being the null hypothesis) would be rejected in favour 

of the alternative 2µ , at the 5% level, based on the data x .  The ( )LR x  equals one on 

both of the diagonals and the rejection area contains some, but not all, of these points.  

This shows that this approach breaches the likelihood principle (but not the SP, since 

this applies only within a given test and each value of 1 2( , )µ µ  corresponds to a 

different test). 
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The following plot shows the rejection areas for the conditional test using 5%α = . 

 

Figure 8.17 
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For the conditional test, the boundaries of the rejection areas are likelihood ratio 

contours, in this case 1
1 2 19{( , ) : ( ) }LR xµ µ = . 

 

We can also use plots to examine what happens when we reverse the order of the 

hypotheses, i.e. when we are interested, both, in testing 1µ  (as the null value) against 

the alternative, 2µ , and in testing 2µ  (as the null value) against 1µ .  The following 

plot shows the results for conventional 5% tests.  (For convenience, a hypothesis is 

only ‘rejected’ when it is acting as null hypothesis.) 

 

Figure 8.18 
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In the areas labelled ‘Reject K’, the hypothesis H (when null) is not rejected but the 

hypothesis K (when null) is rejected.  Note that there are some 1 2( , )µ µ  for which 5% 

tests will, both, reject H in favour of K and reject K in favour of H, in both cases on 

the basis of the same data x .  This feature shows that the rejection of one hypothesis 

in favour of another, even at a low significance level, cannot be interpreted as 

indicating that the data constitutes strong evidence for the one hypothesis relative to 

the other.  Any reasonable conception of ‘evidence’ excludes the possibility that any 

data can be, at one and the same time, strong evidence against H relative to K and 

strong evidence against K relative to H. 

 

The following plot shows the results when both tests are performed conditionally with 

5%α = . 

 

Figure 8.19 
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The area where we reject H does not overlap with that where we reject K, thus 

rejection of either hypothesis can be interpreted as telling us something about the 

evidence.  This is not surprising since the conditional test is equivalent to a test based 

on the value of the likelihood ratio and this value can be interpreted directly as a 

measure of evidence.  Note that the area in this plot where the evidence is weak 

(labelled ‘Reject neither’) is distributed among all four16 inferences by the 

conventional approach (Figure 8.18). 

 

                                                 
16 ‘Reject H’, ‘Reject K’, ‘Reject both’, ‘Reject neither’. 
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8.8 Interval estimates. 

 

Where there is an appropriate ancillary statistic for each and every binary parameter 

space in the natural parameter space, we can use the conditional approach to produce 

a conditional confidence interval (CCI) for θ  based on the conditional tests.  In the 

Normal location case, there is an ancillary statistic of the form | ln |A Y=  for any σ  

and any binary parameter space in 2\  hence we can find a CCI for µ .  We do this by 

using the following relationship between test results and intervals that applies in both 

conventional frequentist inference and also in likelihood inference.   

   

 
0

0

An interval at 'level' ( ) will contain a value of , ,  if and only if
there does not exist any value  (the natural parameter space)
such that a test of H:  versus K:  rejects H at the  le

l γ θ θ
θ

θ θ θ θ γ
′∈Θ

′= = vel.
 

 

In likelihood inference, the level stated for a likelihood interval (LI) is that of the 

corresponding dichotomous tests, i.e. a 1
λ  LI can be derived from the results of 1

λ -

level tests (thus ( )l γ γ= ).   

 

Conventional confidence intervals are able to play two roles simultaneously.  Firstly, 

these intervals have the property that, in the long run, they include θ  a given 

proportion of the time (the coverage of the interval); and, secondly, they summarise 

the accept/reject results of all possible tests of two simple hypotheses carried out at a 

given significance level.  These two features are connected by the relation: 

1 2  coverage significance level= − × , i.e. ( ) 100(1 2 )%l γ γ= − .  The coverage property 

is uncontroversial but its usefulness has been called into question, partly, because it is 

a property of the method with no implications for any observed confidence interval 

derived from data17, and partly because the existence of any ancillary statistic for the 

natural parameter space can lead to the situation where we know that the success rates 

of certain, identifiable, sub-classes of intervals are different from each other and from 

the nominal (i.e. average) coverage.  (For many years, the Welch example has been 

                                                 
17 See especially Pratt (1961), p.165 for a concise and witty discussion of why this is such a serious 
shortcoming. 



 Chapter 8: E.C.I. for log-symmetric models. 

 223

regarded as the classic example of this phenomenon.  We have shown that, while it 

constitutes an interesting case, it does not provide a good argument in favour of 

(Fisherian) conditioning, as is usually thought.  A better instance of conditioning 

solving the ‘variable coverage rates problem’ is given in our ‘Gradient Model’ 

discussed in Chapter 10.)   

 

 

The more important role of intervals may, therefore, be as a summary of the results of 

all possible tests.  A simple formula for the confidence interval circumvents the need 

to carry out many separate hypothesis tests.  It follows that the interval is only as good 

as the tests to which it is equivalent.  The common expectation of intervals is that they 

should contain all the ‘plausible’ values of θ  or ‘all values of θ  that are reasonably 

consistent with the data’.  In the absence of posterior probabilities, this has no easy 

interpretation.  However, we can certainly base an interval method on our conditional 

tests.  In that case the interval comprises just those values that are consistent with the 

data in the very definite sense that ‘the data does not provide much more evidence for 

any other hypothesis than for this one’.  We know that a conventional confidence 

interval does not satisfy this requirement because standard tests often reject a 

hypothesised value based on data that does not constitute strong evidence against it in 

favour of any alternative.  It follows that values are excluded unnecessary from 

conventional intervals, which are, as a result, shorter than likelihood intervals or 

conditional confidence intervals.  The shortness of the conventional interval tends to 

be regarded as a point in its favour because it homes in on θ  better than (say) a 

likelihood interval.  But this assumes an evidential interpretation that is not justified 

by the unconditional methodology.  Certainly intervals should not be wider than 

necessary but it seems that our requirement that they contain all values consistent with 

the data (as defined above) does make the extra length of the LI and CCI a necessity. 
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Conditional confidence intervals for the log-symmetric case. 

 

For any data, t , we can find an optimal conditional test (see §8.7) on any 

1 2( , )B µ µΘ ≡ and this produces a relevant significance level of 1 2( , )a aα α µ µ= .  Let18  

 
2

1 2
1 2

( , )
max ( , ),a

µ µ
α α µ µ

∈
=

\
 

 

 i.e. α  is the achievable least upper bound on the relevant significance level of the 

tests on all the various hypothesis pairs. 

 

The CCI for the Normal mean, µ , based on the observed value of 2~ ( , )T N µ σ , and 

corresponding to tests with an upper bound on the conditional significance level of α , 

is given by: 

 1
0 2 ln( ).t α

ασ −±  

 

Like the CI, and the likelihood interval (for this model), the CCI is symmetric around 

the observation 0t .  Thus any such symmetric interval can be interpreted as either a 

CCI, CI or LI.  Depending on the interpretation preferred, the rigor of the interval will 

then be determined by either α , α  or λ  (respectively). 

 

The interpretations of six different intervals as likelihood intervals, conventional 

confidence intervals (CI), or conditional confidence intervals (CCI) are shown below 

in Table 8.11.  For example (looking at the left-most column), the CCI using 5%α =  

is identical to the CI based on (one-sided) tests at 0.76%α =  (usually called a 

98.48% CI), and to the 1
19 LI for µ .  Note the two intervals at the right end of the 

table.  The likelihood and conditional interpretations of the 90% and 95% 

conventional intervals suggest they are inadequate since 1
λ  and α  are too big. 

 

                                                 
18 More generally, the upper bound on the conditional significance level is defined by 

2( , )
max ( , )
i j

a i j
θ θ

α α θ θ
∈Θ

= . 
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Table 8.11 

CCI: α  5.00% 2.50% 5.88% 3.03% 20.54% 12.78% 

CI : α  0.76% 0.34% 0.93% 0.42%   5.00%   2.50% 

LI: 1
λ  1/19 1/39 1/16 1/32 1/3.9 1/6.8 

 

(Note: the 1
λ  LI for µ  is: 0 2 lnt σ λ± .) 

 

The CCI and LI are in broad agreement (as are the analogous tests), since the CCI 

with significance level bound, α , is the same as the 1
λ LI with 11 α

λ α
−= .  Thus 1

mα =  

implies that 1 1
( 1)mλ −= , this means that conventionally significant values of α  (say, 

less than 1
10 ) are associated with significantly small19 values of 1

λ . 

 

8.9 The Cauchy location model. 

 

For tests about the mean of a Normal population, ( )E Tµ = , we find that, for any 

binary parameter space, 1 2{ , }µ µ , the statistic  

 1

2

( ; )
1 2 ( ; )| ln | | ln ( ; , ) | | ln{ } |T

T

f T
f TA Y LR T µ

µµ µ= = =  

is ancillary (in the restricted sense).  We have called this property log-symmetry, and 

it is not confined to the Normal location model. 

 

If the density function of a variable X  is given by  

 2

1( ; ) ,  ,  ,
(1 ( ) )Xf x x

x
θ θ

π θ
= ∈ ∈

+ −
\ \  

 

we say that X  has a Cauchy distribution with location parameter median( )Xθ =  

(and scale parameter one).  By comparison with the Normal distribution, the Cauchy 

has very heavy tails, as shown below20.  (When 0θ =  this distribution is also called 

the T distribution with one degree of freedom.) 

                                                 
19 As judged by Royall, for example. 
20 The densities shown are Cauchy ( )θ  and 2( , )N πθ . 
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Figure 8.20 
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As in the Normal case (for fixed σ ), the shape and spread of the Cauchy density is 

unaffected by changes to θ  and the density is symmetric.  Let x  be a single 

observation from a Cauchy population, then, for any distinct values 1θ  and 2θ , the 

likelihood ratio of x  is given by: 

 
2

1 2
2

2 1

( ; ) 1 ( )( ) .
( ; ) 1 ( )

X

X

f x xy LR x
f x x

θ θ
θ θ

+ −
= = =

+ −
 

 

For any fixed 1 2{ , },B θ θΘ ≡  define 1 2| | 0θ θ∆ = − > , then ,x∀ ∈\  ( )y LR x=  lies in 

the interval (1/ , )k k  where 2 21
2 (2 4 )k = + ∆ + ∆ + ∆  and is greater than one.  These 

bounds are shown below as a function of ∆ . 

  

Figure 8.21 
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The Cauchy location model is log-symmetric. 

 

It is clear that the statistic | |D X θ= −  (where 1 2
2

θ θθ += ) has the same distribution 

under each of the hypotheses defined by BΘ ; this is true by symmetry, as in the 

Normal case. 

 

This case differs from the Normal case in that D  is not a function of Y  – the MSS – 

it is thus not ancillary in the restricted sense.  However, if | ln |A Y=  can be shown to 

be a function of D , then A  must be ancillary in the restricted sense, since it is clearly 

a function of Y .   

 

A  is a function of D  if and only if 1 2 1 2 1 2( ) ( ) ( ) ( ),  ,D x D x A x A x x x= ⇒ = ∀ .  Suppose 

1 2( ) ( )D x D x d= = , then either 1 2x x=  in which case 1( )A x obviously equals 2( )A x , 

or (WLOG) 1 ( )x dθ= −  and 2 ( )x dθ= + .  If 1
2 1( ) [ ( )]LR x LR x −=  then 1 2( ) ( )A x A x= .   

 

Let 1 2 , δ θ θ θ θ= − = −  ( ),δ ∈\  then: 

 

 

2
2

1 2
1

2

2

2

2

1 ( )( )
1 ( )

1 ( )
1 ( )

1 ( ) ,
1 ( )

dLR x
d

d
d

d
d

θ θ
θ θ

δ
δ

δ
δ

+ − −
=

+ − −

+ − −
=

+ −

+ +
=

+ −

 

 

and  

 

2
2

2 2
1

2

2

1

1 ( )( )
1 ( )

1 ( )
1 ( )

1 .
( )

dLR x
d

d
d

LR x

θ θ
θ θ

δ
δ

+ + −
=

+ + −

+ −
=

+ +

=
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Hence 1 2( ) ( )A x A x= .  The following plot shows the relationships between these 

variables, i.e. that A  is a function of Y  and A  is also a function of D . 

 

Figure 8.22 
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Since A  is a function of D , it must – like D  – have the same distribution under both 

hypotheses, thus the Cauchy random variable is log-symmetric.  It follows that the 

conditional probabilities of |Y A  are those already derived for the log-symmetric case 

and, hence, for 1y < , and all 1 2{ , }θ θ , the p-value of y  conditional upon 

| ln |A a y= =  is ( )
(1 )

ycp y
y

=
+

, as in the Normal case, while, for 1y > , 

( ) 100%cp y = .   

 

Proof that the p-value is less than the cp-value 1
1 2( , ),  , .ky k θ θ∀ ∈ ∀  

 

The conventional p-value is ( ) ( )Hp y F y= , where HF  is the distribution function of 

the likelihood ratio statistic, Y , under the hypothesis (H) 1θ θ= .  For 1y > , 

( ) 100%cp y = , but (since Y  is continuous with a positive density on the interval 

1( , )k k ) ( ) 100%p y <  for all y k< , hence for 1 y k< < , ( ) ( )p y cp y< .   

 

To show that ( ) ( )p y cp y<  when 1y <  we need to show that 

1 2( ) /(1 ),  , .HF y y y θ θ< + ∀  
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In order to prove this result, we treat 1y <  as fixed and allow 1 2| |θ θ∆ = −  to vary 

within the bounds consistent with the observation of y , i.e. 2 2(1 ) /y y∆ ≥ − .  The 

scenario is complicated by the fact that Y  is not a one-to-one function of the natural 

variable, as it was in the Normal case, instead there are two values of x  (call them 

1 2( ) and ( )x y x y ) associated with any given value of y . 

 
1 11

2 1 1 1( ) ( ; ) {tan ( ( ) ) tan ( ( ) )}Hp y F y x y x yπ θ θ− −
∆ = ∆ = − − − , where 

1 1 2 2 1 2( ( ); , ) ( ( ); , )LR x y LR x y yθ θ θ θ= =  . 

 

The latter equation can be solved to give:  

 
1/ 22

2 1
1 1 2

( )( ) 1
(1 ) (1 )

yx y
y y

θ θθ
⎧ ⎫− ∆

− = − −⎨ ⎬− −⎩ ⎭
 

 

and 

 
1/ 22

2 1
2 1 2

( )( ) 1
(1 ) (1 )

yx y
y y

θ θθ
⎧ ⎫− ∆

− = + −⎨ ⎬− −⎩ ⎭
. 

 

For fixed 1y < , let21 

2 2 1/ 2 2 2 1/ 2
1 1

( ) ( )

1 { (1 ) } { (1 ) }{tan [ ] tan [ ]}.
(1 ) (1 ) (1 ) (1 )

g p y

y y y y
y y y yπ

∆

− −

∆ =

∆ ∆ − − ∆ ∆ − −
= + − −

− − − −

 

 

Thus, for any given y , g  is a function of ∆  on the domain |1 |[ , )y
y y

−ℑ ≡ ∞ .  If, for all 

1,y <  max ( ) /(1 )
y

g y y
∆∈ℑ

∆ < + , then it follows that 1 2( ) ( ),  1, ,p y cp y y θ θ< ∀ < .  It is 

straightforward to show that the function g  has maxima at two turning points 

occurring at 2(1 )y
y
−∆ = ± (and not on the bound of the domain); both turning points 

produce the same value of ( )g ∆ , i.e. 

                                                 
21 This expression is appropriate regardless of whether 1θ  is greater or less than 2θ  since 

1 1tan ( ) tan ( )u u− −− = − . 
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 1 11 2 1 2
1 1

1max( ) {tan [ ( 1 )] tan [ ( 1 )]}y yy y
g y y

π
− −

− −
= + + − − + .   

 

Let ( ) max( )UB y g= .  This is an upper bound on ( )p y  in the sense that, for all ∆  

consistent with y , and for all 1y < , ( ) ( )UB y p y∆≥ .  Thus, if 

/(1 ) ( ) ( 1)y y UB y y+ > ∀ < , it follows that ( ) ( )cp y p y∆> , as claimed.  The plot, 

below, shows that this is true. 

 

 

Figure 8.23 
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The gap between ( )p y∆  and ( )cp y  is generally larger than the above plot suggests 

since, for any given ∆  (i.e. hypotheses), ( )p y∆  is less than ( )UB y  for all observable 

values of y  other than 22 /(2 )y = + ∆ .  The conventional p-values for the cases 5∆ =  

and 10∆ =  are shown in the plot below.  Note that the conventional p-values are 

significant (less than 5%) for many values of y  for which the cp-value is not.  A 

likelihood ratio of 1
2.50.4 =  (viewed from a likelihood perspective) provides evidence 

against H that is not much stronger than that which tossing a single head provides for 

the two-headed hypothesis relative to the fair coin hypothesis.  The cp-value of this 

observation is 28.6% (for all ∆ ), which is consistent with the likelihood 

interpretation, whereas the conventional p-values are less than 10% when 5∆ =  and 

less than 5% when 10.∆ =  
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Figure 8.24 
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(Note that, for any given value of ∆ , y  is at least 2 21
2 {2 4 } 0+ ∆ − ∆ + ∆ >  which 

equals 0.037 for 5∆ =  and 0.010 for 10∆ = .  For the sake of simplicity, ( )cp y  and 

( )UB y  are shown as a functions of 0y >  in the above plots.)  

 

 

A limited range of likelihood ratios. 

 

Example 8.3. 

 

Consider a test of the form H: 1θ θ=  versus K: 1
1 2

θ θ= +  (for any 1θ ∈\ ), thus 

1
2

∆ =  and 1
2[ , 2]y ∈ .  In this case, y  takes a very narrow range of values; no data 

supports either hypothesis over the other to any greater extent than the result head 

favours the double-headed hypothesis over the fair coin hypothesis. 

 

This can be seen in the following plot.  The densities of X  under H (solid line) and 

under K (dotted line) are shown, together with twice the densities (in grey).  For no 

value of x , is either of the densities ever more than twice the other density. 
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Figure 8.25 
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A single observation on the random variable X  is not a good basis for choosing 

between these particular hypotheses because X  behaves in much the same way 

regardless of whether it is H or K that is true.  This flaw in the design of the 

experiment is reflected in the power of the conventional test (see below22), but not in 

the range of the p-value. 

 

Table 8.12 

Sig. Level, α  CLR* Power, κ

1% 0.500370 1.999% 

5% 0.509233 9.939% 

 

[* Critical likelihood ratio.] 

 

The fact that the power is very small – only about twice the significance level – is a 

flaw in the design of the experiment but is usually regarded as affecting the inference 

only by limiting our ability to infer anything useful from a failure to reject H.  Note 

that, if we were to observe a value of y ≤ 0.50037, we would reject H at the 1% level; 

                                                 
22 These values are found by numerically solving the equation: 

2 2
1 11 1 1

, 1 1(1 ) 2 (1 ) 22(1 ) 2(1 )
( ) {tan ( [ 1]) tan ( [ 1])}y y

Y y yy y
F yθ π θ θ θ θ− −

− −− −
= − + + − − − + − −  

to find  
a) 

1,: ( ) ,YCLR F CLRθ α=  and 

b) 1
1 2

, ( )YF yαθκ += . 
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this result would appear to be truly significant since the probability of Type I error is 

small (1%), unlike the probability of Type II error.  

 

This type of problem can occur in any case where the likelihood ratio statistic, Y , is a 

(non-degenerate) continuous statistic.  No matter how restricted the domain of Y , 

there will be some observable values of y  that produce statistically significant results 

since ,( ) ( ) 0Y Hp y F y= →  as Ly y→  (its lower bound).  This is not true of cp-values.  

In any log-symmetric case, (1 )( )  ( 1)y
ycp y y+= ∀ <  and thus if y  is bounded below by 

some Ly  it follows that ( )cp y  is itself bounded below by the value (1 )
L

L

y
y+ .  In the 

present example 1
2Ly =  and thus ( )cp y  can never be less than 33%; no data that can 

be obtained from this poorly designed experiment will be interpreted as significant 

evidence for rejecting H in favour of K, if the inference is made conditional upon A . 

 

The cp-value reflects the facts about this scenario – the limited range of likelihood 

ratios – much more accurately than does the p-value.   The following plot shows the 

minimum possible value (over y ) of ( )cp y  as a function of 1 2| |θ θ∆ = − , in the 

Cauchy case.  For any given value of ∆  and 1y < , ( )cp y  must lie above the curved 

line.  The smaller ∆  is, the more restricted are the possible values of y  (i.e. the more 

similar the distributions of X  under H and K), and the more limited the range of cp-

values; it is not possible find a cp-value of 5% (or less) when 4∆ ≤ .   

 

Figure 8.26 
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However, disparities between the likelihood ratio and the p-value do not only occur 

when the hypotheses are close together. 

 

Example 8.4. 

 

Consider a test of H: 0θ =  versus K: 10θ = .  In this case, y  can be observed 

anywhere in the interval 1
102[ ,102] , so it is possible to observe data that provides 

strong evidence against H relative to K (or vice versa).  Does this mean we can 

confidently interpret a small p-value as such evidence?  Suppose we observe 6x =  

(shown below). 

 

Figure 8.27 
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It is clear that 6x =  is only slightly more consistent with K than with H.  We can 

confirm this by calculating the likelihood ratio 1
0 2.180.4595y = = .  Thus, again, the 

evidence is of about the same weight as that from a single head in the paradigm coin-

tossing example.  The cp-value is not significant: ( ) 31.5%cp y = .  However, the 

conventional p-value of this observation is 4.32%.   Even though y  can take values 

that are much smaller than the observed 0 0.4595y = , the (unconditional) probability 

of these values is so small that ( 0.4595) 4.32%HP Y ≤ = .  Thus the observed value 0y  

is relatively small (probabilistically speaking) and so produces a significant result 

even though it is not actually small and there are observations with much smaller 

likelihood ratios.  When we condition on | ln |Y , this effect is greatly mitigated. 
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Averaging over unobserved values. 

 
As always, the conventional p-value (or significance level) is the mean, over a , of the 

conditional probabilities (or levels).  Since only one value of a  is observed in any 

given experiment, it is inappropriate to quote the average over all possible values.  

Consider again the above example where 10∆ = .  If we observe the data 0 0.4595y = , 

then the unconditional p-value is significant at 4.32%.  The various conditional 

probabilities that go to make up this unconditional probability are: 

 ( ) ( 0.4595 | ),   (0, ln102]Ha P Y A a aρ = ≤ = ∈ . 

If Af  is the density function of A , then the conventional p-value can be written as:   

 
ln102

0

(0.4595) ( ) ( ) ( ( ))Ap a f a da E Aρ ρ= ⋅ =∫ . 

We can define the conditional probabilities ( )aρ  for every value of a , but note that 

only one of these probabilities is a conditional p-value – namely, 0( )aρ  where 

0 | ln 0.4595 |a = .  (To find a cp-value, we condition on the value of a  that actually 

occurred.) 

 

Why is the p-value so small? 

 
We can see why conditioning makes such a difference when we will look at the values 

of ( )aρ associated with different values of a . 

Figure 8.28 
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( ) 0aρ =  unless 0 | ln 0.4595 | 0.78a a≤ = ≈ , since is it possible to observe 0.4595y ≤  

only when a  is in this range.  Thus many of the values in our average are zero, 

although the value that we observed, 0 0( ) ( )a cp yρ = , is not. 

 

The other influence on the overall average is the distribution of the ancillary statistic 

A .   The following histogram shows the distribution of A  simulated from a sample of 

3000 instances. 

 

 

Figure 8.29 
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The values of a  for which ( ) 0aρ =  have a very high probability and this affects the 

conventional p-value, which is the expected value of ( )Aρ .   

We can identify ( ( ))E Aρ  from the (simulated) distribution of the random variable, 

( )Aρ . 
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Figure 8.30 
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There is a large probability mass associated with the value 0ρ = , this is so great that 

the densities associated with the other possible values of ρ  in [0.315,0.5) barely show 

on the histogram.  Clearly the high probability that 0ρ =  has a huge effect on the 

mean, ( )E ρ = p-value, and drags it down towards zero.  Before the experiment, the 

probability that we would observe a case where 0ρ =  was very high; this fact 

dominates the conventional p-value, even though, in our particular case, ρ  turned out 

to be 31.5%.  Only by using the cp-value can we remove the influence of the 

unobserved values of A , and, hence, of ( )Aρ 23.  Before the experiment, there was a 

high probability that | ln |A Y=  would be large, i.e. that ( )Y LR X=  would be very 

large or very small.  This reflects the fact that the two hypotheses are far apart and the 

bulk of the observable x -values are much more likely under one hypothesis than the 

other.  In such a case, we have a high expectation that the data we observe will 

provide definite evidence one way or the other.  However, if we are unlucky, the 

experiment will produce data that is not much more likely under one hypothesis than 

the other.  In such a case, we should accept that this has happened and not attempt to 

modify the result by including the more definite evidence that we might have, but did 

                                                 
23 Since ( )Aρ  is a function only of A , it is also ancillary in our sense and we can think in terms of 
conditioning on the observed value of ρ  if we wish (the results are the same).  Note that this only 
applies when we are interested specifically in the p-value of the data 0.4595y = , since ρ  was 
defined for this purpose.  That ρ  can not be used as an equivalent general purpose ancillary statistic is 
evident from the fact that it is not a one-to-one function of A . 
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not, observe.  Using the average p-value instead of the conditional p-value amounts to 

quoting the strength of evidence that we deserved to get (in view of our experimental 

design), rather than that actually produced by the experiment.  

 

Generalisation. 

 

We can make the Cauchy model more general by allowing a scale parameter other 

than one.  If X  is Cauchy with a known scale parameter, σ , and median θ  which is 

the parameter of interest, then  

 2( ; , ( )) ,  ,  ,  ( 0)
(1 ( ) )X x

f x x
θ

σ

σθ σ θ σ
π −

= ∈ ∈ >
+

\ \ . 

 

Our discussion generalises to this case. 

 

8.10 Other log-symmetric scenarios. 

 

We will briefly mention some other models that are log-symmetric so that the same 

relationship exists between ( )y LR x=  and cp-value ( )x  as in the Normal and Cauchy 

location cases. 

 

The Logistic (location) model. 

 

Consider the continuous random variable, X , with density dependent on the location 

parameter, θ , and a fixed, known scale parameter β  according to: 

 
( ) /

( ) / 2( ; , ( )) ,  ,  ,  .
{1 }

x

X x

ef x x
e

θ β

θ βθ β θ β
β

− −
+

− −= ∈ ∈ ∈
+

\ \ \  

 

Then X  has a logistic distribution and its density is symmetric around θ , as shown 

below. 
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Figure 8.31 
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For a test of 1θ  versus 2θ , the likelihood ratio of a single observation, x , is given by: 

 
1 2 2

1

( ) / ( ) / 2

( ) / 2

{1 }( ) .
{1 }

x

x

e ey LR x
e

θ θ β θ β

θ β

− − −

− −

+
= =

+
 

Y  is a continuous variable on the support 1 2 1 2| | | |( , )θ θ θ θ
β β

− − −  and, since | ln |y  is symmetric 

around 1 2( )
2

θ θ+  (shown below), is follows that this model is log-symmetric.  

 

Figure 8.32 
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Plot of |ln y| vs x for the logistic location model.

 

Thus, for all 2
1 2( , )θ θ ∈\  and 0β >  (fixed), ( )cp y  is the same function of y  as in 

the Normal and Cauchy cases. 
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The Double-exponential (location) model. 

 

Consider the continuous random variable, X , with density dependent on the location 

parameter, θ , according to: 

 1
2( ; ) exp{ | |},  ,  .Xf x x xθ θ θ= − − ∈ ∈\ \  

 

The plot below shows the densities of X  under H: 0θ =  and K: 2θ = . 

 

Figure 8.33 
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Although X  is a continuous variable ( )θ∀ , ( )Y LR X=  is not, since (for instance) 

when 1 2θ θ<  

 
1

1 2 112
1

1 2 222

exp{ | |},  exp{ | |}
exp{ | |},  .exp{ | |}

xxy
xx

θ θ θθ
θ θ θθ

+ − <⎧− −
= = ⎨ − − >− − ⎩

 

 

This is shown in the following plot. 
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Figure 8.34 
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Thus 2( ) ( 2) 0H HP Y e P X−= = > > , i.e. Y  has positive probability mass at 2e  and 2e− .  

Y  is partly continuous and partly discrete.  However, by symmetry, it is easy to show 

that | ln |Y  (which is also partly discrete) still has the same distribution under H and K 

and hence this model is log-symmetric for all 2
1 2{ , }θ θ ∈\ .  It follows from this that 

the same relationship between cp-value ( )x  and ( )LR x  applies here as in the Normal, 

Cauchy and Logistic cases. 

 

 

 

The Bernoulli model with symmetric hypotheses & stopping rules. 

 

We now look at two models where Y  is discrete. 

 

Consider a series of independent Bernoulli trials each resulting in either success or 

failure with constant probabilities p  and (1 )p−  respectively; the parameter of 

interest is p .  The trials continue until brought to a halt by the stopping rule, R .  We 

consider only that subset of this class of experiments satisfying both the following 

conditions: 
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• The binary parameter space for p  is of the form ( ,1 ),  where (0,1)θ θ θ− ∈ . 

• The stopping rule, R , is ‘symmetric’ in the following sense:  If we were to 

define a second stopping rule by swapping over the roles played by success 

and failure in the definition of R , the two rules would have the same meaning. 

 

Suppose a model/hypothesis-pair satisfies these requirements, then that case is log-

symmetric, i.e. | ln |Y  is ancillary, in the restricted sense, on the binary parameter 

space.  We prove this below. 

 

Let #U successes= , #V failures=  (thus # trials U V= + ), then ( , )U V  is a 

sufficient statistic for p .  Then, 

 

 2[( , ) ( , )] ( , ) (1 ) ,  where ( , ) ,  {0,1,2,...}.u v
R R RP U V u v C u v p p u v ς ς= = − ∈ ⊆  

 

 

( , )RC u v  is a combinatoric term, (based on the rule, R ) which counts the number of 

ways in which the experiment can end with the result ‘u successes and v  failures’. 

 

Without loss of generality let H: p θ=  and K: 1p θ= −  then  

 (1 )
(1 )(1 )

( , ) exp{( ) ln( )}
u v

u vy LR u v u vθ θ θ
θθ θ

−
−−

= = = − ⋅ . 

 

Hence, 1| ln | | ( ) ln( ) |Y U V θ
θ−= − ⋅ .   

 

Since θ  is a constant, this is a one-to-one function of | |U V−  which is an equivalent 

ancillary statistic.  To show that this case is log-symmetric, we need to show that 

| |U V−  has the same distribution under both hypotheses. 
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First note that, because the rule, R , is symmetric, ( , ) ( , ),  ,R RC i j C j i i j= ∀ .  Hence, 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

(| | ) [( ) ] [( ) ]

( , ) (1 ) ( , ) (1 )

( , ) (1 ) ( , ) (1 )

( , )[ (1 ) (1 ) ]

m a m a
a v v u a u

R R
v l a u l a

m a m a
a v v u a u

R R
v l a u l a

m a
a i i i a i

R
i l a

P U V a P U V a P V U a

C a v v p p C u a u p p

C a v v p p C a u u p p

C a i i p p p p

+ +

= =

+ +

= =

+ +

=

− = = − = + − =

= + − + + −

= + − + + −

= + − + −

∑ ∑

∑ ∑

∑ .

 

 

(The bounds ( )l a  and ( )m a  depending on R  and a .) 

 

 ( )

( )

(| | )

( , )[ (1 ) (1 ) ],

H
m a

a i i i a i
R

i l a

P U V a

C a i i θ θ θ θ+ +

=

− =

= + − + −∑
 

and 

 

 
( )

( )

(| | )

( , )[(1 ) (1 ) ]

(| | ).

K
m a

a i i i a i
R

i l a

H

P U V a

C a i i

P U V a

θ θ θ θ+ +

=

− =

= + − + −

= − =

∑  

 

Thus, this is a log-symmetric scenario of which Birnbaum’s Binomial example with 

1 2 1p p+ =  (discussed in Chapter 5) is a special case. 

 

While the best-known symmetric stopping rule is the rule (fixed n ) that gives rise to 

the Binomial distribution, it is easy to define many other such rules; for example, 

‘sample until there are at least twice as many outcomes of one kind as the other’ or 

‘sample until there are equal numbers of successes and failures or 100n = ’.  Clearly 

the range of rules is very varied as are the sample spaces to which they give rise; it 

follows that a given experimental result will often produce very different 

(conventional) p-values, depending on which rule was used.  However, if we 

condition on the observed value of | ln |Y , the cp-value of any given data will be the 

same regardless of which symmetric stopping rule was used.  This is immediate from 
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the fact that any given data uniquely defines ( , )u v , which, in turn, defines y  (shown 

above), and hence ( )cp y  for the log-symmetric case.  Thus, conditioning removes the 

effect that the stopping rule24 has on the interpretation of the data.  

 

The Uniform location (Welch) model. 

Finally, we note that the Welch example, 1( , , )nX X X= …
�

 where 

1 1
2 2~ ( , )iX Uni θ θ− + , is log-symmetric for all 2

1 2{ , }θ θ ∈\ , as we showed in Chapter 

6.  This is still true if we let ~ ( , )iX Uni c cθ θ− +  for any fixed, known c . 

Summary. 

The following are all log-symmetric test scenarios: 

 

a) Normal location test with any variance and hypotheses.25 

 

b) Cauchy location test with any scale parameter and hypotheses. 

 

c) Logistic location test with any scale parameter and hypotheses. 

 

d) Double-exponential location test with any scale parameter and 

hypotheses. 

 

e) Test on the Bernoulli probability based on independent Bernoulli trials 

with a symmetric stopping rule and hypotheses such that 1 2 1p p+ = . 

 

f) Test on the location of a Uniform mean with any known spread and any 

hypotheses. 

 

Any observed likelihood ratio is interpreted the same way by the cp-value, based on 

the ancillary statistic | ln |Y , in all of the above cases. 

  

                                                 
24 Among this class of rules. 
25 Simple hypotheses. 
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8.11 Why the cp-value is larger than the p-value, in all log-

symmetric cases. 

 

When we condition on the ancillary statistic, | ln |A Y= , the cp-value of any data is 

always greater than the conventional p-value.  This is surprising on two counts: 

 

i. It contrasts with the conditional significance levels.  These vary around the 

unconditional significance level (their mean), so that they are sometimes 

greater and sometimes less than the nominal level. 

  

ii. In Cox’s example of two Normal populations, it is clear that the unconditional 

p-value of any observation is the mean of the two conditional p-values.  So, in 

that case, the cp-value is sometimes greater than the p-value and sometimes 

less, depending on which of the two populations we observed.   

 

Why does the log-symmetric case produce such different results?  

 

To answer this question we need to consider a fairly general version of the 

conditioning scenario.  Suppose that we want to perform conditional inferences based 

on some statistic that has the same distribution under both hypotheses in the binary 

parameter space.  All data can be transformed into the form ( , )y a  where y  is the 

likelihood ratio of the data and a  is the observed value of the ‘ancillary’ statistic 

being used26.  If A  is ancillary in the restricted sense, it will be a function of the MSS, 

Y , and the second part of this expression will be redundant, however, we will keep 

the more general formulation since, when Cox’s example is applied to a binary 

parameter space, A  is not a function of Y  (and is not ancillary in the restricted sense).  

 

Suppose that we observed data corresponding to 0 0( , )y a ; the conditional p-value of 

this data is 0 0 0 0( , ) ( | )Hcp y a P Y y A a= ≤ =  (which may need to be defined in the 

limit). 

                                                 
26 Note that ( , )Y A  is sufficient since Y  is minimal sufficient.  A  is possibly ancillary in the 
unrestricted sense of having (only) the same distribution for all θ  in the parameter space. 
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The unconditional p-value of the data is: 

 0 0 0 0( , ) ( ) ( | ) ( ) .H H A
a

p y a P Y y P Y y A a f a da= ≤ = ≤ = ⋅∫  

(This value will be the same for any observable value of 0a  consistent with 0y .)  Thus 

0 0( , )p y a  is the mean, over a , of the conditional probabilities 0( | )HP Y y A a≤ = .  It 

follows that these probabilities must vary around 0 0( , )p y a , but these probabilities are 

not conditional p-values of 0y  since a cp-value involves only values 0  and y a  that 

correspond to some observable data. 

 

For a fixed 0y  and any given value of a  we define  

 
0

0 ( ) max{ : ( , ) corresponds to some observable data}
y y

y a y y a
≤

= . 

 

Thus 0 ( )y a  is the largest value of y , not exceeding 0y , with which we may observe 

the ancillary statistic taking the value a . 

 

Then, when 0 ( )y a  exists, 0 0 0( | ) ( ( ) | ) ( ( ), )H HP Y y A a P Y y a A a cp y a a≤ = = ≤ = = , 

i.e. it is the conditional p-value of the observation corresponding to 0( ( ), )y a a . 

 

If, for some a , no such 0 ( )y a  exists, then 0( | ) 0HP Y y A a≤ = =  and is not the cp-

value of any possible data. 

 

Removing the expressions that are equal to zero, we can re-write 0 0( , )p y a  as: 

 
0

0 0 0
: ( )  exists.

( , ) ( ( ), ) ( )A
a y a

p y a cp y a a f a da= ⋅∫ . 

This is not necessarily a mean over a  since it may not cover all possible values of a  

(i.e. 
0: ( )  exists.

( )A
a y a

f a da∫  may be less than one). 
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Cox’s case. 

 

A special case occurs when the conditional distributions of Y  given the various 

values of A  all have the same support, i.e. every possible value of Y  is observable 

with each and every different value of .A  (This can not happen if A  is a function of 

Y 27.)  In such a case, for all 0y  and a , 0 ( )y a  exists and is equal to 0y .  This is true in 

Cox’s case where the two values of a  correspond to Normal populations with 

different variances.  Any two hypotheses about the mean of a Normal population will 

produce likelihood ratios everywhere in the interval (0, )∞  regardless of the variance; 

thus y +∈\  for both 1a =  and 2a = , and hence 

 
0

0 0( ) max{ : ( , ) corresponds to some observable data} ,  
y y

y a y y a y a
≤

= = ∀ . 

As a result, 

 0 0 0 0 0( , ) ( , ) ( ) ,   , .A
a

p y a cp y a f a da y a= ⋅ ∀∫  

The p-value of 0y  is thus the weighted mean of the conditional p-values of 0y  so that 

the conditional p-values of 0y  for all (i.e. both) the possible values of a  vary around 

the unconditional p-value, one being larger and one smaller than the unconditional 

value.   

 

 

In general, however, all we can say is that 

 
0 0 0 0

0 0 0 0
: ( ) : ( )

( , ) ( , ) ( ) ( ( ), ) ( )A A
a y a y a y a y

p y a cp y a f a da cp y a a f a da
= ≠

= ⋅ + ⋅∫ ∫ . 

The first part of the sum integrates over those values of a  for which 0 0( )y a y= , i.e. 

values of a  that are consistent with the observation of 0y ; the second part integrates 

over those values of a  that are not consistent with 0y  but are consistent with some 

value of y  less than 0y  (and hence 0 ( )y a  exists); the cp-values in this component are 

not cp-values of 0y  .  The weights, ( )Af a , in these expressions will not necessarily 

sum to one across the two integrals since there may be values of a  (with non-zero 

                                                 
27 If A  is a function of Y , there is no overlap between the supports of the conditional distributions of 
Y ; in other words, A  partitions the unconditional support of Y .  
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density or probability) for which no 0 ( )y a  exists.  All the cp-values of 0y  are 

included in the first integral.  Given the varied nature of the rest of the expression and 

of the weights in both parts, we cannot make any general statement about the 

relationship between the conventional p-value, 0 0( , )p y a , and the conditional p-

values, 0 0( , )cp y a ; in particular, it is not necessarily the case that the cp-values vary 

around the p-value.   

 

We have already shown that the cp-values do not vary around the p-value in the 

Normal case where | ln |A Y= ; in this instance, A  partitions the (unconditional) 

support of Y  so that any value of y  is consistent with only one value of a  and 

0 0( )y a y=  only if 0| ln |a y= .  (In fact, for 0 1y < , 0 ( ) ay a e−=  where 0| ln |a y≤  and 

is non-existent otherwise.)   

 

Contrast with significance levels. 

 

When it comes to significance levels the situation is a little different.  A test that 

rejects H in favour of K whenever cY y≤ , has a significance level (conditional or 

unconditional) that is calculated by reference to the fixed critical likelihood ratio 

value, cy , regardless of the data observed.  Thus the unconditional significance level 

is the mean of all the possible conditional significance levels, since 

 ( ) ( | ) ( ) ( )H c H c A a A
a a

P Y y P Y y A a f a da f a daα α= ≤ = ≤ = ⋅ = ⋅∫ ∫ . 

The difference is due to the fact that 0( | )HP Y y A a≤ =  is a cp-value of 0y  only if it is 

possible to observe 0( , )y a , whereas ( | )H cP Y y A a≤ =  can be regarded as the 

significance level of the test, conditional upon A a= , even when A a=  is 

incompatible with cY y=  or, indeed, cY y≤ .  This approach is correct in terms of 

identifying the failure rates associated with different values of A . 

 

We have shown that for the Normal and Cauchy location models, the cp-value is 

always greater than the conventional p-value.  We now show that this is true for any 

scenario that is log-symmetric. 
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Proof that the cp-value is greater than the p-value in all log-
symmetric cases. 

 

Let Uy  be the least upper bound on the support of the unconditional distribution of Y , 

i.e. it is the smallest value of y  such that ( ) 1HP Y y≤ = 28.  (In the Normal case 

Uy = ∞ .) 

 

Claim. 

In any case where | ln |A Y=  has the same distribution under hypotheses H and K, it 

follows that Uy y∀ <  the p-value conditional upon | ln |A y=  will be greater than the 

unconditional p-value of y , i.e. ( ) ( ).cp y p y>    

 

Proof. 

Assuming that Y  is not degenerate at one, 1Uy >  because, otherwise, ( ) ( )H Kf y f y≤  

everywhere, and they cannot both integrate to one. 

 

In any log-symmetric case,  

 
(1 )

100%,   1
( )

,     1.y
y

y
cp y

y+

≥⎧⎪= ⎨ <⎪⎩
 

 

First note that if Uy y=  then ( ) ( ) 100%cp y p y= =  so, even in this case, 

( ) ( )cp y p y</ .  If 1 Uy y≤ < , then, ( ) 100%cp y =  while ( ) 100%p y <  (since 

min{ : ( ) 100%}U y
y y y p y< = = ) and hence ( ) ( ).cp y p y>    

 

Now consider the case where 1y < .  (The following is written in terms appropriate for 

a continuous A ; for the discrete case replace the integral and density with a sum and 

probability.) 

                                                 
28 In the next chapter we will show that the cdf of Y  under K is always greater than the cdf of Y  under 
H, thus ( ) 1 ( ) 1H KP Y y P Y y≤ = ⇒ ≤ = . 
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0 0

0

( ) ( )

( | ) ( ) .
H

H A
a

p y P Y y

P Y y A a f a da

= ≤

= ≤ = ⋅∫
G  

If 1y < , then | ln | lna y y= = − .  Thus, if 0 1y < , it follows that 0y y≤  if and only if 

0ln lna y y= − ≥ − .  Hence it follows that:   

 0 0
0

,                | ln | ln
( )

non-existent, otherwise.

ae a y y
y a

−⎧ ≥ = −
= ⎨

⎩
 

 

Thus 

 

0

0

0

0

0

0 0
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ln

ln

ln
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0
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(1 )

( )
(1 )
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(1 )

( ( ) | ln )
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a y a

a
A

a y

a

Aa
a y

a

Aa
a y

A
a y

A

A

p y cp y a f a da

cp e f a da

e f a da
e

e f a da
e

f a da

eE A y
e

E h A A y

−

≥−

−

−
≥−

−

−
≥−

≥−

−

−

= ⋅

= ⋅

= ⋅
+

⋅
+

≤

⎛ ⎞
= ≥ −⎜ ⎟+⎝ ⎠
= ≥ −

∫

∫

∫

∫

∫

 

 

Now note that ( )
(1 )

a

a

eh a
e

−

−=
+

 is a decreasing function of a  and thus, when a  is in 

the range 0[ ln , )y− ∞ , the maximum value of ( )h a  is 0

00 (1 )( ln ) y
yh y +− = .  Since this is 

the maximum value, it follows that the mean must be less than it, i.e. 
0

00 (1 )( ( ) | ln ) y
yE h A A y +≥ − < .  Hence 0

00 0(1 )( ) ( )y
yp y cp y+< = . 

 

Thus, in all log-symmetric cases, the conventional p-value of any observation 

overstates the significance of the data, in that, it is smaller than the relevant p-value of 

the data.  
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8.12 Comments and summary. 

 

In this chapter we have described a number of scenarios where the statistic 

1 2| ln | | ln{ ( ; , } |A Y LR X θ θ= =
�

 is ancillary, in the restricted sense, on the binary 

parameter space 1 2{ , }B θ θΘ ≡ , that is, it has the same distribution Bθ∀ ∈Θ  and is a 

function of the MSS for Bθ ∈Θ  (i.e. Y ).  In all but the Bernoulli case this is true for 

all possible binary subsets of the natural (or conventional) parameter space and thus it 

is possible to define the conditional confidence interval based on A  (§8.8) as well as 

conditional hypothesis tests.  Of the cases examined here, the Normal location case is 

the most general and useful, because it applies to random samples of all sizes through 

the relation 22~ ( , ) ~ ( , )i nX N T X N σµ σ µ⇒ = . 

 

In all the scenarios covered in this chapter, a single relationship connects the p-value 

of the data, conditional upon a , to the likelihood ratio of the data, in stark contrast to 

the lack of association between the conventional p-value and likelihood ratio.  It 

follows that, in each case, any given value of the likelihood ratio is interpreted (via the 

cp-value) the same way, despite the differences between the various model/ BΘ  

combinations. 

 

The conventional significance level of any test can be understood as the before-

experiment expected value, over a , of the conditional significance levels associated 

with the various possible values of a .  We have illustrated this relationship in the 

Normal (§8.6) and Cauchy (§8.9) cases. The p-value is also the expected value (over 

a ) of certain conditional probabilities, which include the cp-value.   

 

Whenever data, x
�

, is in the α -level rejection region of a test but does not constitute 

strong evidence against H relative to K (i.e. ( ) 1LR x /�
�

), it follows that the relevant 

significance level of the test, aα  (where | ln ( ) |a LR x=
�

), is unreasonably large, even 

though α  is not (see Example 8.1).  Thus the conditional significance level of a test 

is consistent with our intuitions about the quality of that test. 
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An important feature of many ancillary statistics is that they function as ‘precision 

indices’, distinguishing between categories of more and less informative data (see 

Buehler (1982) for a formal definition of this concept).  In this connection we remark 

that, if Y  is a measure of the weight of evidence in favour of H relative to K, then 

| ln |A Y=  is a measure of the absolute weight of evidence between the hypotheses 

(one way or the other) – each value of a  being associated with a set of data points 

{ : }x A a=
�

 that is homogeneous in terms of the weight of evidence between the two 

hypotheses.  A  also indicates the size of the conditional error probabilities.  For any 

a , if 1 1y <  is a solution of the equation | ln |y a= , then the test that rejects H if and 

only if 1y y=  is the only non-trivial conditional test of H versus K (i.e. the only test 

where neither of the conditional error probabilities is 100%).  Such a test has equal 

conditional error probabilities and these are decreasing in a ; when a  is larger we can 

test both H (as null) versus K and K versus H and achieve lower error probabilities 

than when a  is smaller – thus we might describe A  as an ‘error index’ and this can 

also be seen as a measure of precision. 

 

 

  

 


