Chapter 8: Exhaustive conditional inference for log-

symmetric models.

8.1 Ancillary statistics for a binary parameter space.

We were able to clarify the situation in Welch’s Uniform example by conditioning

upon a statistic, A;, that is ancillary for a binary parameter space ®, ={6,,6,}. This

allowed us to identify some critically important features of the example and to make
inferences much more sensible than those produced by, either, unconditional
(‘optimal’) theory or conditioning on a variable (R) that is ancillary for the larger
parameter space, R . A striking feature of this case is that the inference conditional
on R, which is now standard, seems quite reasonable until we consider two simple
hypotheses, at which point the flaws in the approach become apparent. Given a

binary parameter space, conditioning on A; satisfies all the requirements of the

restricted conditionality principle advocated by Cox, and even that advocated by
Fisher. Such a principle does not lead to the likelihood principle when coupled with

the sufficiency principle as Birnbaum’s unrestricted CP does.

In this chapter and those that follow, we will look at what happens when we condition
consistently on ancillary statistics of this type. The fact that we are using a restricted
form of CP means that we can remain within the general framework of frequentist
inference, replacing the measures «, f# and p-value by their conditional counterparts
which, by Cox’s argument, are more relevant to the question at issue. Since our

ancillary statistics must be functions of the MSS for ®,, some statistics that are

functions of the MSS for larger parameter spaces are ruled out of contention; on the

other hand, the requirement that the statistic have the same distribution for all @ is

Dlet O, be a binary parameter space, which is a proper subset of the larger space @ , and suppose
that S isa MSS over ® , then Y = LR(X), which is the MSS over ®; , must be a function of S .

Any (restricted) ancillary statistic over ® must be a function of S, but this does not guarantee that it
will also be a function of Y . If it is not, it will not be a candidate for the role of ancillary statistic over
Q.
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less onerous for a binary parameter space than for a larger space; thus, some statistics
that are not ancillary for larger spaces are ancillary for our purposes. We will find
that we are often able to identify ancillary statistics for all the binary subsets of the
natural parameter space even in cases where no such statistic exists for the natural

parameter space per se; thus the scope of our conditional inference is much wider.

Fisher/Cox conditioning, based on large parameter spaces, usually produces results
that are quite radically different from unconditional (optimal) inference; consider, for
instance, Cox’s two-stage example and the difference between the 5% conditional and
unconditional rejection regions (84.3). We might imagine that these new inferences
might be (in some sense) closer to ‘likelihood’ inference, since the LP can be derived
from the unrestricted CP, but this is not the case. When isolated sub-experiments, of
the type identified by Cox, are analysed by the usual frequentist methods, the
inference can be every bit as inconsistent with the LP, or law of likelihood (LL), as an
unconditional inference; in particular, even when the conditional significance level is
low, there is no general upper bound on the value of the critical likelihood ratio. This
is true even when the restricted CP is extended to allow for conditioning on
approximately ancillary statistics — a version that is less restrictive than Birnbaum’s
CP? regarding the distribution of the statistic. We might infer from this that the
difference between the two conditionality principles (whether or not the ancillary
statistic is a function of the MSS) is critical and prevents any convergence of the
methods. However we will show that, when a binary parameter space is used, the
restricted version of the CP produces results that are, in a meaningful way, more
consistent with both the LP and the LL than any existing frequentist methods. Thus,
our approach occupies a position between frequentist and likelihood methods;
although it is a frequentist method, constraints in terms of the likelihood ratio arise

naturally from it.

In this chapter we consider models with a particular type of symmetry property that
enables us, not only to identify ancillary statistics for binary parameter spaces, but
also to provide complete details of the inferential results that follow from conditioning

upon them. Since such statistics exist for all binary subsets of the natural parameter

2 Birnbaum’s ancillary statistic has exactly the same distribution for all @, whereas an approximate
ancillary statistic has a distribution that may vary slightly over 8.
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space, it is also possible to define conditional confidence intervals (CCI) for the
parameter of interest. Inference on the mean of a Normal population where the
variance is either known or can be estimated very reliably is among these cases; thus,
inference about any @ based on its maximum likelihood estimator comes under this
heading as long as the sample is reasonably large and the mean and variance are
functionally independent (in Chapter 10 we consider cases were the latter requirement

is not met).

Note that all p-values are one-sided since they are associated with a particular simple
alternative hypothesis. If the observed value of the likelihood ratio statistic (i.e. the

LR of the observed data) is y,, then the conventional p-value of this data is
p(y,) =P, (Y <y,), which is the smallest value of « that could lead us to reject H on

observing this data.

8.2 Conditional inference on the mean of a Normal population.

Weak and strong data identified by an ancillary statistic.

In Example 3.2, we looked at a test of the hypotheses H: =0 versus K: x =3 based
on T ~ N(x,1). We split the sample space, R, into two regions:

7, =[1.0,2.0]
and 7, =R\ z,.

The data in 7, provides weaker evidence regarding the two hypotheses than data in
7,. The optimal 5% test is defined by the rule Reject H if t>1.645. When we

calculated the error probabilities of this test, conditional upon the data being weak
(T €7,), we found them to be o, =20.05%, and g, =47.78% (compared with the

unconditional values,  =5% and £ =8.78% ), verifying the view that data in this

range does not produce reliable results.
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It is appropriate to condition on the event T e 7, because it has the same probability

under H as under K. Our ancillary statistic is A*, defined by:

1 Ter
A*=A*(T) =

2, Ter,
A* is ancillary (in the restricted sense) for the binary parameter space ®, ={0,3}
since it has the same distribution ¥z € ®, and is a function of the MSS on ®,, as

follows.

The MSS on any binary parameter space is the likelihood ratio statistic, LR(T). In
general, if T ~ N(u,c?), then for testing H: 1z = 1, against K: u = 4, the likelihood
ratio is:

_f@®

()

= exp{Er[(t— 1,)" — (t— )" 1}
= exp{_ [(ss — 1)t = D)1},

where zz = Y24,

LR(t)

Thus any function of t that is defined symmetrically around the value z is a function
of the likelihood ratio. In our example, zz=1.5 and the sets 7, and z, , which define

A*, are symmetric about this point, therefore A* can be written in terms of the
likelihood ratio (i.e. the MSS), as follows:

o 1, LR(t) e[e*°,e™]
2, otherwise.

An equivalent two-stage experiment.

We can use A* to construct a notional two-stage experiment that has the same

probabilistic structure as the experiment observing t.
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STAGE 1.

We take a single observation of the random variable, A*, observing a to be either 1

or 2. This is an observation from the following distribution (that applies under both H

and K).
Table 8.1

a 1 2
P(A*=a) | 0.1359 | 0.8641

(Note that this distribution shows how likely we are to get weak or strong data.)

STAGE 2.

If a=1 in stage 1, we observe the value of a random variable T, €[1.0,2.0] that has

one of the densities shown in the following plot, under H and K (respectively).

Figure 8.1

20 —

15 —

1.0 —

05 —

If a=2 from stage 1, then we observe the value of a random variable

T, e R\[1.0,2.0] that has one of the densities shown in the following plot.
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Figure 8.2
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The conventional inference, based on T, combines the distributions of T, and T,

using, as weights, the probabilities of the two possible values of a; this combination
is then used regardless of what the result of stage 1 (observed value of a) actually
was. As argued in previous chapters, the alternative approach is to use only the
observed value and distributions (under H and K) of the statistic that is observed in
the second stage of the experiment. This is more appropriate since the outcome of

stage 1 is not directly informative about the test (LR(a) =1,va), but T, is a more
reliable statistic, for the test, than T, (so A* is a precision index®), and the test result

should reflect this fact.

8.3 Defining an exhaustive ancillary statistic.

The argument for conditioning on the strength of evidence is compelling, but we can
derive different results from the same data if we partition the sample space of T
differently; many such divisions will give rise to ancillary statistics. Further, we can
get a better picture of the accuracy of the stage 2 variable if we divide the sample
space into more than two subsets while still maintaining the ancillarity. The further

away from x the data is, the stronger our information about which hypothesis is true.

® Not necessarily the most discriminating precision index.
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Therefore we define a new ancillary statistic:

A=G(M) =T -xl.

A is a continuous variable on R* with a distribution that is the same under H and K,

as can be deduced from the following plot*.

Figure 8.3

A is a function of the MSS, LR(T), as follows:

2

A=—2_|InLR(T)|.

T ol

The coefficient of |In LR(T)| is a positive constant for any given ¢* and ©,, and
thus |In LR(T)| is also an ancillary statistic. Since A and |In LR(T)| are one-to-one
functions of each other, they partition the sample space of T in exactly the same way
and, if we condition on the observed value of either variable, we will obtain the same
results. Any variable that is a function of A is also ancillary, but, unless it is a one-
to-one function of A, it will be less informative. A* is an example of this, since

. {1, ifA<i

2, ifA> 1.

*l.e. check that P(|T — 2z |< €) is the same under H and K.
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If we want to find the most relevant error probabilities of any particular test criterion,

we should condition on the observed value of A.

We call A exhaustive because it possesses the following feature.

A statistic, A= "V(Y), that is ancillary on a binary parameter space, is
exhaustive if it partitions the support of the likelihood ratio statistic, Y,
into subsets, all of which contain exactly two values of y, except for the
subset {y =1}.

This definition is motivated by the fact that any subsets produced by an ancillary
partition of the likelihood ratio statistic must contain more than one value unless that

value is y=1. It follows that subsets containing two elements are the smallest that

can be produced. Thus, an exhaustive ancillary statistic partitions the support of Y
maximally with respect to the size of the subdivisions. Since ancillary statistics that
are one-to-one functions of each other create the same partitions, it follows that any

one-to-one function of an exhaustive ancillary statistic (EAS) is also an EAS. The

statistic ﬁ_l InY | is exhaustive since [InY | is an EAS, as follows: |InY |=a>0

< yef{e?,e™}and |InY |=0 < y=1. (From here on, we define A as |InY | for

greater simplicity.)

8.4 Conditional probability in the limit.

A is a continuous variable and hence P(A=a)=0,Vva. Inorder to condition upon

the observed value of A, we must define the relevant conditional probability in the
limit.
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If the observed value of Y isy and A=¥(Y), then the observed value of A is
Y(y)=a. Letf

P(Y=y|A=a)=1limP(Y e (y-&,yl| Ac(¥(y-&). ¥(y)])

:"m{ P(Y e(y-&,y]) }
=0 | P(Ae(Y(y—¢), YY)D

This definition is convenient, but it also makes sense for our purposes. For any fixed

e>0,and i insome set |_, adiscrete variable, say A®, defined by

A =i, if Ac (i-e,i]

is ancillary (since it is a function of A) and we can gain information by conditioning
upon it; this is unproblematic since A° is a discrete variable. By making ¢ smaller,
we can get increasingly accurate information about the amount of evidence obtainable

from the data; the greatest amount of information is in the limit as &€ — 0, which is to

say,as A° > A and I, > R". Viewing A as the limiting case of A”,as ¢ -0,

provides the above definition of probability conditional upon A=a. The symbol P
reminds us that this ‘probability” is defined in the limit, although it will be
indistinguishable from a conventional conditional probability derived from a discrete

A’ with sufficiently small ¢.

What features does a conventional z-test have, conditional on the observed value of
A? In order to answer this question we need to derive the (limiting) conditional

distribution of Y given A=[Iny,|.

> We assume that the function W(-) is monotonic increasing on (y — &, Y] for suitably small & . This
is true for all the ancillary functions of Y = LR considered in this and later chapters of this work as
longas y <1. If y>1 we will find that \¥'(-) is a monotonic decreasing function in [y, Y + &)
allowing us to use the formula:

~ limP(Y €[y, y+¢))

B =y Ama) = oot

limP(Ae (¥(y+2), ¥(Y)])
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8.5 Conditioning in the log-symmetric case.

Definition of log-symmetry.

Let Y be the likelihood ratio of a random variable, T , with respect to simple

hypotheses H and K. If A=|InY | has the same distribution under H and K, we say

that the scenario is log-symmetric and it follows that A is ancillary, in the restricted

(Cox) sense, and exhaustive on the binary parameter space defining H and K.

Conditional probabilities.

Such a structure uniquely defines the conditional distributions (under H and K) of Y

given A=|InY |, the details of which are derived below.

When we condition on the observed value of A (&, =Iny, |), the conditional
distribution of Y given A=a, is (in the limit) dichotomous, that is, Y may only take
those two values (y, and y,") consistent with the observed aoe. We need to derive

the probabilities of these two values under both H and K.
First, we derive some helpful relationships.

The observed value of Y, y,, may be greater than or less than one, i.e. in some cases
the observed value will be the smaller of the two values consistent with a, and in

other cases it will be the larger of the two values. We cannot assume one way or the

other without loss of generality, however we may distinguish between the two

®Thatis, if | InY |=a,, then INY must be either —a, or +a, and Y must be either € or €7 .
Since @, =|In'y, |, it follows that the only two values of Y consistent with this value of A are

exp{-|Iny, [} and exp{+|Iny, [} whichare y, and Y, (not necessarily respectively).
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elements of the conditional sample space, according to size, without making such an

assumption; thus, let

Y, = min{yo’ y(;l}
= 3/171 = max{yo’ y(;l}
hencey, <1<y,

The observed value, Yy, , will be sometimes y, and sometimes y;*.

Since A has the same distribution under both hypotheses, then, letting f, and f, be

the density functions’ of Y under the respective hypotheses, and utilising the

relationship between the density of A and the density of Y , it follows that:
yil fH (yfl) +Yy fH (yl) = yil fK (y171) +Y; fK (yl)

We can use this, in combination with the fact that f, (u)/ f, (u) =u (Vu), to show
that:
() fu (%) = ya f0 (y2) and (i) £ () = ¥5 Fie ().

We want to find P(Y =y, given A=|Iny, |), and since |Iny, |=|InYy, |, this is equal to:

lim P({y, —¢ <Y <y} given {|In(y, - &) [<[InY [ In "y, [})
_ "m{ Py <Y <y}) }
P{lIn(y,—&)I<[InY [<]Iny, [})

_lim { Py, -2 <Y <y}) }
Py - <Y <yD+PA%' <Y <(h-2)})

-0

&0

We can divide the numerator and denominator by ¢ >0 and hence write this

expression as:

" This derivation is constructed on the basis that Y is a continuous variable, but note that the results are
also valid for Y discrete or partly discrete.

186



lim Py,—e<Y<y}/e
=0 | P{y,—e<Y <y PD/e+P{y, <Y <(y,-¢)" /e

_ { {F(y)-F(y,-2)} ¢ }
O HF )~ F O — e e+ HF (- ) - F (o, O ]
) im[{F (y,) - F(y,~ &)}/ ¢]
~ImI{F (y,) - F(y, — )} el + Im{F (y, - &) ) - F (1, )} ]
_ f(y.)
f(y,) + M (v, ) ™)~ F (v, )} ]

where F is the distribution function of Y , and the density function, f , isits

derivative.

Let H(u)=F(u™), then
iM{F((y,-&) ) -F(y;)} el
=lim[{H(y, —&)-H(y,)} ]
=-H I(yl)
=f(y)- v

Thus,

P(Y =y, |A=lIny,])
)
fly)+ (v’

Using (i) and (ii) above, it follows that:

Pi(Y =y, [A<Iny,])
fr (Y1)
O w () + Fa () yr?
_ fr (¥1)
IMCARSANARA
_ %
@+,

2
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and

P (Y =y, | A<|Iny, )
_ fi (v,)
fK(Y1)+ fK(yl_l)‘ y1_2
_ fi (v1)
f (V) + Y2 f (v) - v
1
(1),

Hence the distribution of Y given that A=|Iny, | is that shown in Table 8.2.

Table 8.2
y y, =min{y,, ¥;'} | Vit =max{y,, y,'}
P.(y) Y1 1
1+y,) (1+y,)
I3|< (y) 1 yl
1+y,) (1+y,)

Features of the conditional distributions.

Some examples of the conditional distributions of Y are as follows.

If we observe data with a likelihood ratio of % (i.e. y, =%) then we have also

observed the variable A taking the value In3. The distribution of Y conditional

upon A=In3 is:
Table 8.3

y 113
Po(y) | 7] %
Py) | 3|3
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(Note that, as should be the case, Y is the likelihood (probability) ratio for the

conditional distributions as it was for the unconditional distributions.)

In this case the conditional p-value of the observation y, =3 is

On the other hand, if we observe data with a likelihood ratio of 10, the distribution of

Y giventhan A=1In10 is:

Table 8.4

P(y) | & |1

P(y) |1 |&

This gives a conditional p-value for the observation y, =10 of

P,(Y <10|A=In10)=1.

Note that, when a is larger, there is a greater difference between the (conditional)
distributions of Y under H and under K and this makes it easier to distinguish

between the two hypotheses on the basis of y. If, in the first case (A =1In3) we used
a rejection rule Reject H when y =1, then the conditional significance level and
probability of Type Il error (e, and f,) are both 25%, whereas, in the second case
(A=1In10) the rule Reject H when y =3+ produces conditional error probabilities of
9.09%. Forany a=[Iny, |, and rule Reject H when y =y, the two conditional error
probabilities are the same and equal y, /(1+y,) =1/(1+e"®), which is a one-to-one

function of a. This shows that A is a good precision index®.

® 1t can also be argued directly from a likelinood perspective that | InY | measures the *absolute
(weight of) evidence’ in the data and is thus a “natural’ precision index.
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It is clear that any value of y greater than one has a conditional p-value of 100%.

From a likelihood point of view, such a value indicates that the data is more consistent
with H than K.

We have identified the exhaustive ancillary statistic, | InY |, and derived the

distributions of the minimal sufficient statistic, Y , conditional upon it. In §8.6 we

will use this to show that conventional inference on x has disturbing conditional

properties before developing (in §8.7) an approach with better conditional features.

8.6. Exhaustive conditional inference on the mean of a Normal

population.

The conventional and conditional significance levels of a standard

z-test.

We have shown that in Cox’s two-stage example and Welch’s Uniform example, the
unconditional, ‘optimal’ test has conditional features (for instance, significance level)
that vary depending on the value of the ancillary statistic. In this section we look at
the conventional inference on the mean of a Normal population (variance known)
(popularly called ‘z-tests’) and assess the significance level and power of these tests
conditional on the given value of the exhaustive ancillary statistic A=[InY |. We will
find that the conditional value of the significance level varies greatly, even a test with
a nominal level of 5% producing conditional significance levels as high as 100%, and
that these unreasonable levels correspond to cases where the usual interpretation of

the standard test is intuitively wrong.

Suppose T ~ N(u,5°) (o® known) and we test H: 2 = g, against K: zz = u,, then the

optimal rejection rule for a significance level « is:
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t<u-2 -o, <
Reject H when Tt S A
L2 +2, -0t > .

However the conditional significance level of this test, which is a function of

a, = Iny, |/ InLR(t,) |, will usually not equal ¢ . In Cox’s example, the result of a
coin toss dictates which of two Normal populations (same mean, different variance) is
sampled from. The unconditional test quotes a significance level that is the average of
the two conditional significance levels associated with the different populations. The
same is true here, except that our ancillary statistic, A=|InY |, can take an infinite
number of values rather than two. A population of Y , associated with each value of

a, =|Iny, |, is described by the conditional distribution of Y given A=a,, shown

again below.
y Y= min{yo’ yal} yfl = max{yo, yal}
I3H (y) Y1 1
A+y) d+y,)
lSK (y) 1 Y1
A+y) d+y,)

(Where y, <1< y;*.)

This distribution can be written in terms of a, as:

Table 8.5

y Y, = e yfl =e™

Po(yy| e* |_1
L+e ™) | Q+e™)

Py | 1 | e®
(1+e™) | (@+e™)
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The conventional, « -level, rejection rule (above) can be written in terms of vy,
instead of t, as follows:

Reject H when y < exp{$ (6 —2z,_,)}=CLR(J, ), where & =1-*!

P .

The value CLR(0, &) =exp{$ (o —2z,_,)} is the critical likelihood ratio of the
conventional « -level test and is dependent on x4, x, and o only through the value

of & ; we will often abbreviated this to ‘CLR’ where its dependence on ¢ and « is
understood. The CLR is the cut-off point for the rejection region in terms of the
likelihood ratio statistic, Y , instead of the natural variable T , hence

a =P, (Y <CLR)”.

In order to calculate the conditional significance levels of the conventional test, we
need to distinguish between three cases.

i. CLR<y, (ie. CLR<e™)
ii. Yy, <CLR<y;' (i.e.e™® <CLR<e"™)

iii. CLR>y," (i.e. CLR>e"™).

The conditional significance level, «, , is derived from the distribution of Y,

conditional on a,, by «, = P,(Y <CLR|A=a,). From the conditional distribution

of Y, we can see that the three cases, above, give rise to different conditional

significance levels as follows.

i. a =0

TP T
' ©(1+y) (@+e ™)

. o, =1.

% All NP tests are inherently left-sided when written in terms of the likelihood ratio statistic, Y .
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For any given test (fixed values of & and ¢'), the expression ¢ —2z,  is fixed and

must be either negative, zero, or positive. In each of these instances, we can observe,

at most, two of the above cases regarding the CLR since, for instance, if 6 -2z, , <0

then CLR <1 and this rules out case iii. We can derive the formulae for ¢, , for all

possible cases, as shown in the table below.

Table 8.6

A:o6<2z ,=CLR<1

B:

§=2z,,=CLR=1

C:0>2z, ,=CLR>1

0, a<-In(CLR)

2 e a>-In(CLR)

e—a

o, =——>,
(1+e®)

va

1, a<In(CLR)

%=1_¢ __ asIn(CLR)
@+e™®)

(Where e =y, = min(y,, yoil) )

The conventional significance level as an average.

In Cox’s two-stage example it is easy to see that the nominal (i.e. unconditional)
significance level of the optimal test is the average of the two conditional significance
levels, which can also be thought of as the pre-experiment expected value of the
conditional significance level, i.e. E(«,). Our intuition is that the conditional
significance level for the population that was actually observed is more relevant than
the average value, which involves the population not observed. We will now show
that the nominal level of the conventional z-test (« ) is the average of all the
conditional significance levels, weighted by the distribution of the ancillary statistic
A=lInY |, i.e. a=E(a,).

In order to find the expected value of «, over all possible values of a, we need to

find the density of the random variable A. Using the fact that A=[InY | it can easily
be established that
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F(@)=0(+2)-d($-2), a>0
and hence that
fa(@) =3[9 + 3+ 45 )]
=5 [P35 +8)) +exp(-3(5 —5))]

=sh-exp(-3 (3 +2)?)[1+exp(a)].

The conventional significance level, « , is equal to the expected value of the random

variable «,, thatis, ¢ =E(a,) = Jaa - f,(a)da. The proof of this is shown below for

the case where ¢ > 2z, . The proofs for the two other cases are similar.

Let 6>2z_,,then

[In(CLR)=]5(5-22)/2 w o2
a,- f(a)da= 1-f,(a)da+ ————f,(a)da
'! A '(.: g 5(5‘[2)/2 (d+e™) ’
LR (5(5—-22)/ 2]+ T 1 1 69 en)da
g 5(6-22)12 1+e*) 5v2x
° 1 ~1(g42)?
=[D(6-2)-D(2)]+ ——e 277 da
5(5[2)/2 oN2r

=[@(5-2)-2(2)]+ | %e%“zdu

=[®(6-2)-@(2)]+[1-D(5 - 2)]
:1_(I)(Zl—a)
=1-(1-«)

=a.

To illustrate this fact we will look at the conditional properties that apply to any

standard 5% z-test with & =4 (for example, 4 =0, 1, =4, o =1). The value of
In(CLR) =4 (6 -2z, ) =2(4-22,4)is 1.42 and, hence, the conditional significance

level is:
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The following plot shows «, as a function of a.

Figure 8.4
Alpha(a) vs 'a' for a conventional 5% test on
the Normal mean with delta=4.
a(a)
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When a is large, the likelihood of the data under one hypothesis is much larger than
that under the other hypothesis, and the conditional significance level becomes
increasingly close to zero (while the conditional power becomes increasingly close to
100%) even though this is a 5% test; but when a is small the conditional significance

level is much larger than the nominal 5%.

If a<1.42, the conditional significance level is 100%. We can examine the reason

for this in terms of the original Normal random variable, T .

Consider the right-sided test of H: z = 4, versus K: iz = 1 + 40 . The standard 5%
rejection region for t is [z4 +1.6450,0) . Consider the event A<1.42, this is
equivalent to z4 +1.6450 <T < 1, +2.355¢0 . If this ancillary event occurs, it is

evident that the probability, under H, of rejecting H (the conditional significance

level) is one since t must be in the rejection region [z, +1.6450,) . Similarly, the

conditional power of this test is one. Since this is true when we condition upon
A<1.42, it must also be true if we condition upon A being equal to any exact value

in (0,1.42] (since a significance level can never exceed one). These details can be
seen in the following plot. Note that whenever |In LR(t)| is less than 1.42, t is in the

rejection region, i.e. t is greater than z, +1.645¢c .
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Figure 8.5

Plot of a=|In LR(t)| versus t for any right-sided
z-test with delta=4.
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This is similar to some of the anomalies that we encountered in the Uniform case.
When the event A (0,1.42] occurs, it tells us nothing about the question at issue
because it has the same probability under both hypotheses, but, when it occurs, we
will always reject H. The fact that the (conditional) significance level is one shows
that we can read nothing into this; on the other hand, the unconditional significance
level of 5% tempts us to interpret this as evidence against H relative to K. The
unconditional significance level is an average value and, in this case, it is low only
because of the contributions from those conditional significance levels associated with
the unobserved cases where A>1.42 (i.e. where the data is more informative than it

is here). This can be further illustrated by considering the distribution of «, .

Since «, is a function of A, itis itself a random variable. The unconditional

significance level of the conventional test remains « no matter what data we observe,
whereas the conditional significance level is obtained by conditioning on a, which is

a function of the data.

For the case 6 > 2z, ,, P(a,=1)=P(A<4(6-22))=®(5-2z)—-(1-a) >0, thus the
random variable «, is partly discrete having a probability mass at the point “1” but is

continuous elsewhere with density:
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(NB: The density tends towards infinity as «, — 0.)

fa(A) (u) = UZ; ¢(E+M]

In the plot below, we show the distribution of «, for the case o =5%, 6 =4. (The
probability mass at «z, =100% is shown by an area of that size so that the total area is

one.)

Figure 8.6

Density of alpha(A) for a
conventional 5% test with delta=4.
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The plot shows that the expected value of the random variable, «, , is 5% — the
nominal significance level of the test. This value is influenced by both the outlying
probability mass at &, =100% and the very high densities associated with values of
a, close to zero; in fact the probability that «, is close to 5% is quite low. For any

observed data, only one value of a will have occurred, yet the conditional
significance levels associated with every possible value of a contribute to the
conventional significance level. Since a contains no information about the question

at issue, but indicates how informative our data is, it is wrong to allow the inference to
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be affected by values of a that did not occur. The test result should reflect the

information available to us.

The conditional power of the conventional z-test.

Since the conditional distribution of Y given A=a, =[Iny, | is as below (Table 8.2

shown again):

y Y= min{yo’ yél} y£1 = max{yo, yél}
Pay) | _ Y 1

A+y) d+y,)
P (Y) 1 N

A+y) @+y,)

and the conventional, « -level, rejection rule is:

Reject H when y < exp{2 (6 -2z, ,)}= CLR(«, 5), where § =%

o 1

we need to distinguish between the same three cases (below) in order to calculate the
conditional power.

i. CLR<y, (ie. CLR<e™)
ii. Yy, <CLR<y;' (i.e.e™® <CLR<e"™)

iii. CLR>y," (i.e. CLR>ge"™).

The conditional power, x, =1- /4, (where S, is the probability of Type Il error
conditional upon A=a), is derived from the distribution of Y , conditional on a,, by
K, = P.(Y <CLR|A=a,). From the conditional distribution of Y , we can see that

the three cases, above, give rise to different conditional power levels as follows.
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=0

. 1 1
. x, =

o (l+yy) - (l+e™)

. x, =1.
Equivalently,
L B, =1
. A e’
ii. = =
Pa (I+y,) (@+e™)
ii. g, =0.

Thus, if the data we observe is such that y, <CLR < y;* (i.e.e™® <CLR <e'®), it

follows that the conditional probability of Type Il error is the same as the conditional

probability of Type | error even when the unconditional error probabilities were not

the same.

The following table shows the conditional power results for any given test (fixed

values of ¢ and o).

Table 8.7

A:o<2z ,=CLR<1

B:

5=2z,,=CLR=1

C.o>2z, ,=CLR>1

0, a<-In(CLR)

a L as_inCLR)
d+e™®)

K,=———, Va
@+e™®)

1

1, a<In(CLR)

a ;_ a>In(CLR)
@+e™®)

These results are summarised in the table below, which gives the conditional error

probabilities of both kinds for any fixed « -level z-test.
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Table 8.8

, s,
(i) 0<2z_, & a<-In(CLR) 0 1
[Equivalent to: CLR<1 & a <|In(CLR)|.]
(i) 6>2z,, & a<In(CLR) 1 0
[Equivalent to: CLR>1 & a <|In(CLR)|.]
= =
(i) Otherwise [i.e. a >|In(CLR)|]. 1+e® | 1+e™

The error probabilities are non-trivial, and the test meaningful, only when

a>|InCLR|. Since large values of a indicate that we have more informative data,

this makes sense. Also note that ﬁ = is adecreasing function of a, and hence
the conditional error probabilities become smaller and the test more reliable as a
increases. The two extreme cases, (i) and (ii), occur when a=|Iny|</InCLR]|. In
terms of the Normal variate, t, this is equivalent to the requirement:
[t—z|<d=1z_,-o;thus, t is ‘close’ to z (the point half-way between the two
values) indicating ‘weak’ data, and the ancillary set {t:|t -z |< d} is either wholly
within the « -level rejection region (case (ii) when the hypotheses are relatively far
apart so that all the weakest observations are in the rejection region) or wholly outside
the rejection region (case (i) when the hypotheses are close together so that all the
weakest data is outside the rejection region). The conditional error probabilities give
a more accurate account of the reliability of the test result than the conventional error

probabilities.

Conditional p-values and conventional p-values.

In this section, we show that for tests on the Normal mean (o known or accurately
estimable) the p-value, conditional upon the observed value of the ancillary statistic

A=|InY |, is greater than the conventional p-value no matter what the data,

hypotheses, or value of o .
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Let T ~ N(u,o?) where o is known. Let the data be t € R and the binary
parameter space @, ={, 1,} € R? (1, # 1), and o e R*; H states that u = 1

while K states that =z, .

Then, y = LR(t) = exp{s5-[(t - 4)" — (t— ) T R

The conventional p-value is:

OEL),  w<py

-value(t)=
P 0 {1_®(t;ﬁ)’ Hy > [y

This can be written in terms of y as:
ps(y)=@(Iny-57-51/2),

dependent on & = Kt

Denote by “cp(y) ’ the p-value of y conditional upon A=a=|Iny], i.e.

cp(y) =P, (Y <y|A=|Iny]). From the conditional distribution of Y given
A=a=|Iny| (see Table 8.2), it follows that:

100%, y=1
cp(y)=3 vy y<l.
1+y)

When y>1" (i.e. t iscloser to 4 thanto ,), cp(y) =100% since the observed

value of Y is the larger of the two possible values consistent with observing A=a.

On the other hand, (Vo) the conventional p-value, p,(y), goes to 100% only as
y — o, hence cp(y) > p;(y) whenever y >1 (finite). In order to show that this is

also true when y <1, we need to take into account the different possible values of & .

When y =1, y'l =y thus the conditional distribution contains only the observed value and

(conditionally) P(Y <y)=P(Y = y)=1. Where Y is a continuous variable (unconditionally),
there is no need to distinguish between y <1 and y <1 since P(Y =1)=0.
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First, fix y as any arbitrary value less than one and regard p;(y) as g(d) : a function

of 6eR".

L 4@)=—plny 57 -512)x(Iny-5* +3)
=0, ifand only if 5§ =5, = /[~2Iny.
d* _—4(=5,)

0) |, .= <0 and hence g has a unique
d52 g( )l(ﬁ&o 50 g q

It can easily be shown that

maximum at 6 =g,, i.e. max g(0) =g(/-2Iny) =d(—/-2Iny).

Thus, forany y <1, p,(y) < ®(—/-2Iny) (V35); we may call ®(—/-2Iny)

"UB(y)' to indicate that it is, for all &, an upper bound on the conventional p-value,

p(y).

When y <1, the conditional p-value iscp(y) = y/(1+y). From the following plot it is
clear that UB(y) <cp(y), Vy <1, and hence it follows that p,(y) <cp(y), Vy,o.

Figure 8.7

Normal location case: Comparison of
cp-value(y) and the upper bound (UB) on
all p-values(y).
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Note that cp(y) <5% only when y <~ 0.053 whereas the upper bound has values

under 5% for a wider range of y -values. Since it is an upper bound, the p-values
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themselves are generally lower and thus significant for even more values of y .
Unlike the cp-value, the p-value of y varies with the value of & ; the following plot

shows p,(y) for several values of & in the range 0.2 to 2.0.

Figure 8.8

Comparison of cp(y) with p-value(y) for the four
cases: delta = 0.2, 0.5, 1.0 and 2.0.
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We noted earlier that there is a particular tendency for conventional tests to reject H
unreasonably when the two hypotheses are far apart, i.e. when ¢ is large. The

following plot illustrates this point.

Figure 8.9

Comparison of cp(y) and p-value(y) for the
four cases: delta = 3.5, 4.0, 5.0 and 6.0.
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Since ps(y) > ®(2) as y —»1,and ®(-£) >0 as § —» oo, it follows that y can be

close to one and still have a small p-value when & is large; in the plot above, the p-
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values of y =0.99999 are less than 5% in all four cases. From a likelihood point of

view, such data is almost exactly neutral regarding the two hypotheses; the

conditional p-value (2233 = 49.99975%) is consistent with this view unlike the

conventional p-values. When we condition on A=|In(0.99999) |, we reduce the

sample space to one containing only two outcomes, y =0.99999 and y =0.99999 ",

both of which are in almost equal agreement with the two hypotheses; in such a
situation, the failure rate of any rule allowing us to reject H is high and the conditional
p-value reflects this fact.

Close hypotheses.

When the hypotheses are far apart the conventional method gives strange results,
rejecting H when the LR is very large and the data is far more consistent with H than
with K. This is especially disturbing since these tests have very high power and so
appear to be reliable. However, there are also problems when the hypotheses are
close together. In such a case there is very little difference between the distribution of
T under the two hypotheses and, thus, observing t is not a good basis for choosing
between the hypotheses — no data amounts to strong evidence one way or the other.
For some models, the likelihood ratio is strictly bounded in such circumstances. For
the Normal location model, the likelihood ratio theoretically takes values in the range

(0,0) in all cases, however if we put realistic bounds on t, these will flow through to

the likelihood ratio.

Example 8.1.

Consider T ~ N(,1) and suppose we want to test H: =0 against K: z=0.2. The

hypothesised values are one-fifth of a standard deviation apart.
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Figure 8.10

Densities of 't' for the two close
hypotheses: mu=0 and mu=0.2.
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t

Consider all possible data lying within five standard deviations of either of the
hypothesised means, i.e. t e[-5.0,+5.2]. Clearly the two distributions are very alike;
T behaves in much the same way under either hypothesis. The poor design of this
test is reflected in the low power; however, this does not prevent us from observing
data (in this range) that has a very small p-value. Any t >1.645 has a p-value less

than 5%. Thus we may easily reject H in favour of K.

The likelihood ratio bears out our intuition that none of this data is convincing in

either direction.

Figure 8.11

Likelihood ratio for testing H:mu=0 versus K:mu=0.2.
Data is within 5 standard deviations of either mean.

-5.0 0.0 t 5.2

205



The likelihood ratio lies within the range [+1-,2.77] — none of the data in this range

favours one hypothesis over the other to the extent that the outcome hh favours the
double-headed hypothesis over the fair coin hypothesis. It seems wrong that we can

observe p-values that are very close to zero in such a case.

Compare the p-value with the cp-value. When y <1 (i.e. t >0.1) the cp-value is
ﬁ. Since y is never less than -, the cp-value is similarly bounded below and is

greater than 26.5% for all data in this range (see below).

Figure 8.12
Conditional and uncondition p-values for
testing H:mu=0 versus K:m=0.2.
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The conventional test is quite inadequate at responding to the challenges of this
situation. The low power indicates that the experiment is not very likely to produce
data that rejects H in favour of K, even if K is true. It follows that we can infer
nothing from a failure to reject H. However this fact becomes irrelevant (except as a
criticism of the design of the experiment) if we do, in fact, reject H, and we are able to
do so surprisingly easily, based on data that is close to neutral for these hypotheses
(LR<

=, for p-value<5%).
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An examination of standard tests on composite hypotheses.

In Chapter 3, we looked at tests of a simple null hypothesis and a composite
alternative hypothesis, and asked whether rejection of the null hypothesis necessarily
implies that the data is much more consistent with some component of the composite
alternative than with the null hypothesis. According to likelihood theory, the answer
is no (see Chapter 7). What answer does our conditional approach produce? Consider

the following case (modified from Example 3.1).

Example 8.2.

X,,..., X, are independent and identically distributed N (x,8%) variables. We want

to test H: 2 =163 versus K: 12 >163, with data X =166.3. Since X ~ N(x,2°), this
data has a conventional p-value of 1—®(2£3182) ~ 4.95% , and we can reject H at the

5% level.

Although this is significant, it is obvious that the data is more consistent with the

hypothesis H than with (say) the hypothesis x =180, which is a component of the

composite hypothesis K. Clearly the strength of evidence against H relative to any
given component of K is very varied. Is there some component of K that the evidence

in the data strongly favours relative to H?

Since this is a Normal location test, we can use the conditional results for log-
symmetric models. The values of 4 =163 and o =8 are fixed, as is X =166.3
(called t in the general theory). When we consider different components of K, we are
allowing , to vary within the domain (163,). Since cp(y) :ryy) is a monotone
increasing function of the likelihood ratio (y), it is smallest and most ‘significant’
when the LR is smallest. The LR varies depending on the value of x, and it is easy
to show that it takes the smallest value when x, =X =166.3. When y, =166.3, the
LR value of the data is y =0.25634. This value is greater than ¥ so Royall would

not regard it as significant — the evidence is less strong than that from data hh in the
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paradigm coin tossing case. The cp-value is 2233 = 20.4% which is far from

significant. A test of H against any other component of K will produce a larger cp-
value (and LR) than the one calculated here. On the basis of either the LR or the cp-
value, we can say that the evidence from the data X =166.3 does not justify rejecting

H: £ =163 in favour of any hypothesis nominating a larger value of 4 ; in particular,

all such tests will produce a cp-value of at least 20.4%.

If the data were further away from g, the result would be different. How far away

must it be in order that the cp-value, relative to some component of K, is significant?

Let T ~ N(u,0%), and we observe data t. Whenever t is on the side of z, other
than that defined by K, it follows that, for all components of K, y = LR(t) >1 and
cp(y) =100% ; only when this is not the case is there any possibility of obtaining

conditionally significant results.

In view of this, let H: z = 14 and let K be defined as follows:

K: >, ift>
u<uy, ift<u,.

Over the components of K, the minimum LR occurs at u, =t , hence
. (F_ )2
Yo = Min LR(t) =M =exp (t—étl) :
Ki f(t;t) 20
For a test of H: 1z = 14 against Ki: =t , the cp-value is smallest and is equal to

min cp-value(t) =cp(y;,) = {exp {(t;—ﬂg)z} +1}
K; o

The cp-value is only significant for any component of K if it is significant for the

particular component K; and for this to be true we need to have
-1
_ 2
t: [exp{w}ﬂ} <7,
20

208



where y is some appropriately small value such as 5%, defining a significantly small

cp-value.

This inequality holds only when

Mzﬂlzln(l%)

(o}

(subject to t being on the side of ; specified by K). The conventional p-value of t
can be written as: p-value(t) = @(%) and hence the above inequation can be

written as:

~®~(p-value(t)) > /2In(=)
= p-value(t) < @(—1 [2 In(l’Ty)).

The following plot shows this relationship; * max p(t) ’ denotes the right hand side of

the inequality.

Figure 8.13
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Only when the conventional p-value is less than 0.76%, is the cp-value under 5% for

the test of H versus Kj; it follows that whenever p-value(t) > 0.76%, there is no

component of K for which the cp-value of the data is less than 5%.
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This fact also gives us a general result for tests of two simple hypotheses on the
Normal mean. Whenever the conventional p-value of an observation is greater than
0.76%, it follows that no conditional test of the null hypothesis against any simple

alternative hypothesis will deliver a cp-value less than 5%. (More generally,

whenever the conventional p-value of an observation is greater than @(—1 [2 In(1’77) )

it follows that no conditional test of the null hypothesis against any simple alternative

hypothesis will deliver a cp-value less than y.)

Even when the p-value is less than 0.76%, it is still misleading to quote the result of a

test with a composite alternative as, for instance, ‘Reject H: =0 in favour of

K: x>0 since this does not identify which of the components of K produce
significant results and which do not. If T ~ N(x,1) and we want to test H: =0
against K: >0, the data t = 2.6 has a conventional p-value of 0.466%. Since this is

less than 0.76%, we know that the cp-value will be less than 5% for some components

of K. The plot below shows the cp-values for alternatives in the range (0,5].

Figure 8.14
Plot of conditional p-value of data t=2.6 as a
function of various mu2>0 for the case mul=0,
sigma=1.
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Against the alternative w4, = 2.6, the data has a cp-value of 3.3%, and for any
alternative value of x in the range (1.6, 3.6) the cp-value is 5% or less, but for some

values outside this range the cp-value is very high. Any reasonable summary of the
significance of the observation t = 2.6 to the null hypothesis should distinguish

between these cases.
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8.7 Creating hypothesis tests with good conditional

properties.

We have examined the conventional z-test from a conditional point of view, using the

statistic A=|InY | which is ancillary, in the restricted sense, on the general binary
parameter space (4, 1,) . Although the z-test is widely used, and generally

considered unproblematic, our conditional analyses reveal that the conditional error
probabilities of (say) a 5% test can be appallingly high, and these cases correspond to
those where tests of simple hypotheses produce intuitively unpalatable results (see
Chapter 3). Itis clear that A is an effective precision index and can be used to

discriminate between more and less informative data.

In this section, we use A to construct a new test that has acceptable conditional
properties; this approach is applicable to all log-symmetric scenarios. We then
compare the structure of this test, and its associated confidence intervals, with that of
the standard z-test and z-intervals. We find that the new test possesses some striking
features more usually associated with a non-frequentist approach and produces results

that are much more intuitively reasonable than the standard results.

A bound on the conditional significance level.

For any fixed test criterion (rejection region), the conditional significance level (and
power) of the test depends on the value of A=|InY | observed, thus the relevant
conditional significance level of the test can not be known until after the experiment
has been performed, in contrast to the unconditional (i.e. average) error probabilities.
Since the conditional distributions are discrete, we cannot make all the conditional
significance levels equal without introducing a randomising variable and breaching
the sufficiency principle. However, we can, if we wish, define a rejection rule that

puts an upper bound, & <100% , on all the possible values of ¢, .
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Consider a rule of the form: reject H in favour of K when y <k . First note that if

k >1, there will be some observable a such that o, =100% because both values of
y (y, and y;*) associated with a are in the rejection region (since 1<y, <k ); thus
we must choose k <1. If neither value of y, associated with a, is in the rejection
region, then o, =0 <& and this is acceptable. There remain the cases where the

smaller value of y (y, =e™ <1)is in the rejection region and the larger value is not.

In such a case the conditional significance level is a, =25 and this is less than or

equal to a ifand only if y, <

=15

Hence, the rule

Reject H in favour of K wheny <k =%

has conditional significance levels (¢, ) that are less than or equal to & for all a.

If we want to ensure that the relevant (i.e. conditional) significance level cannot
exceed (say) 5%, then the rule reject H in favour of K when y <+ is appropriate.
Since the rule rejects H when the likelihood ratio is smaller than a certain value, the
test produces the highest conditional power that can be associated with the observed

conditional significance level (Va), i.e. Neyman-Pearson optimality applies

conditionally (as Welch pointed out in 1939).

The relevant significance level.

Even though we may define a rule determined by an upper bound on the conditional
significance levels, it is important to recognise that it is the conditional significance

level for the observed value of a (say, a,) that is the relevant Type I error probability
for the test. This is because «, is the error probability for, as it were, ‘the machine

that was actually used’ in the experiment. The value, &, allows us to identify

significant values of y before the experiment is performed, but, for making an after-

experiment inference, it is the value «, that is important. For example, if the
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experiment produces data, X, :Y, = LR(X,) =5, it is immediately obvious that we can
reject H using @ =5%, since 4 <4, and so a, <5%. From the conditional
distribution of Y given A=|Iny,| (shown below), it is clear that the relevant
significance level of the test is o, =+;=3.03% where a, =|In5;| was the observed

value of A.

Distribution of Y given that A=|In%|.

Table 8.9

y L1132

ISH(Y:y) 3_13 %

=a, =P, (Y <3

|»—\

|A=a)=R, (Y =5 | AdIng; ) =5

©

(The distinction between «, and a ought not to be identified with the distinction

between the p-value (x) and « , in conventional tests. In this case «, is a genuine

significance level, as discussed below.)

The relevant significance level and the cp-value.

What is the relationship between the relevant significance level and the cp-value of

the data? Like the cp-value, the relevant significance level, «, , is a function of the

data; in this it differs from the unconditional & which depends only on the rejection
rule. Unlike the cp-value, it depends on the data only through the ancillary statistic,

A, thatis, a, depends on the rejection rule and on which ‘machine” was used in the

sub-experiment (the latter outcome being part of the experimental result). However,

when A=|InY |, the following relation holds:

Whenever we use a test of the form 'Reject H wheny <;%'
and the data is such that cp(y,) < & <1, then cp(y,) =, .
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In other words, if the observed value, Yy, , is significant, relative to some rule that

precludes conditional significance levels of 100%, then the distinction between the
conditional p-value of the data and the conditional (relevant™) significance level of
the test vanishes — they are the same. This relation holds because of the exhaustive

nature of the ancillary statistic, A=|InY |, specifically, the fact that A partitions the

sample space of Y into sets each containing only two values of Y (y,(a) and
[y,(a)]™) either side of one. Cox’s conditional example®? (for instance) does not

possess this property.

Using the relevant significance level to rank the strength of

evidence.

In unconditional inference, the p-value of the data is sometimes preferred to the
accept/reject result (based on the pre-determined significance level) because it
interprets the data in a more refined way. For example, when o =1, a 5% right-sided
z-test of H: =0, will reject H whenever t >1.645. The results t =3 and t =5 both
lead us to reject H at this level, however, the latter result seems like stronger evidence
against H than the former — a fact reflected by their p-values (and, for this reason, the
p-value is sometimes vaguely interpreted as a measure of evidence of some kind). On
the other hand, the p-value cannot be interpreted as a long-run success rate associated
(purely) with the method, since it depends on the data that was observed in a
particular performance of the experiment, unlike the figure ‘5%’. Contrast this with
the relevant significance level. Consider the case H: z=0 versus K: =5 (o =1)
where t =5 appears to be stronger evidence against Hthan t=3. If we let & =10%,

then we will reject H when the likelihood ratio, vy, is less than 0.111. The likelihood
ratios of the observations are: y, =0.082, when t, =3, and y, = 3.73x10°°, when
t, =5. Thus both observations would lead us to reject H based on & =10%.

However, the two observations are associated with different values of a, = Iny, | (i.e.

1 ‘Relevant’ meaning that the value of A conditioned upon is that actually observed in the
experiment.
12 Cox (1958).

214



different “machines’) and hence the relevant significance level of the test is different
when t =3 than when t =5. Since both values are in the rejection region we know

that the respective significance levels are equivalent to the cp-values where

cp(Yo) = @y hence when t, =3 (a, = 2.5), @, =7.59%), and when t, =5

T (1+yp) !
(8, =12.5), o, =(3.7 x10)%. The value, @, , indicates the long-run error rate for

rejecting H, when H is true, assuming that we use the same rejection rule and the
value of A is the same as that observed here. This can be thought of as the Type |
error probability associated with the machine we actually used and it depends on the
data only in so far as we count the choice of machine as part of the data. The two

values t=3 and t =5 are associated with different values of «, because they were

produced by different machines; specifically, t =5 was produced by a machine that is
better at distinguishing between H and K and produces smaller (non-trivial) error
probabilities than the machine that produced t =3. This allows us to interpret the
difference between the significance of t =3 and t =5 by reference to genuine error
probabilities and we can see that t =5 is indeed more significant, at least, in the sense

of being a significant outcome associated with a more rigorous test.

So far we are in agreement with the conventional view that t =5 is the more
significant of the two results™, however note that the values quoted for the relevant

significance levels are substantially different from the conventional p-values.

Table 8.10
t, | p-value(t,) a,
3 10.10% 7.59%

5 | (2.87x10°)% | (3.7x10%)%

Although the conventional p-value ranks the data in the right order (in terms of
strength of evidence) it does not accurately assess what that strength is. This is
because the p-value is the mean of a number of values, most of which are irrelevant

and smaller than the cp-value (see §8.11). When we make proper allowance for the

B3 This is also consistent with a likelihood interpretation since LR(5) < LR(3).
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ancillary set in which the data, t =3, lies, it is apparent that the rejection rule we are

using has a failure rate (H being true) of over 7%, whereas (for all 4, >0) the

conventional p-value of the data is 0.1%. The job of ranking the data, for which the
p-value is valued, is much better performed by the relevant conditional significance

level.

The cp-value and the likelihood ratio.

In earlier chapters we noted that in conventional tests, including z-tests, a small
significance level does not imply that the critical likelihood ratio (CLR) of the test is
small, nor does a small p-value imply that the likelihood ratio of the data is small. A
conventional significance level, such as 5%, may produce a CLR anywhere in R",
depending on the model and hypotheses. Similarly, an observation may have a large
likelihood ratio, even much greater than one, and still have a significantly small p-
value. The only general connection between the likelihood ratio and significance

measures is the following (where H and K are simple hypotheses).

With respect to any null hypothesis, H, p-value(x) < LR(x) = 2% K,

P (x) ?

This ensures that, as long as the LR is sufficiently small (for some K), the
conventional p-value will be significantly small, but not vice versa. A small p-value
is a necessary but not a sufficient condition for the existence of a small likelihood

ratio (for some alternative hypothesis).

However, when we look at the conditional approach using the ancillary statistic

|InY |, the relationship changes to the following.

L(X)’ LR(X) <1
For all H, K and x, cp-value(x)=< (1+ LR(x))
100%, LR(x)>1.

Thus, the cp-value is a function of the likelihood ratio of the data and this function is

the same across all model/hypothesis combinations that are log-symmetric. In
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particular it holds for all tests on the Normal mean (o known) regardless of the
hypotheses or variance. Moreover, this relationship is one-to-one over those values

where the LR(x) €[0,1). Within the log-symmetric class of models/hypotheses, any
two observations with the same likelihood ratio will also have the same cp-value.

This is a localised version of the likelihood principle*. If an experiment, E,
produces data x, for testing H; versus K1, and, an experiment, E,, produces data X,
for testing H» versus Ky, and LR, (X,) = LR,(X,), then the LP states that x, is evidence
for H; relative to K; to exactly the same degree that x, is evidence for H, relative to
Kz. We have shown that, in such a case, as long as (E;,H,,K,) and (E,,H,,K,) are
both members of the log-symmetric class, the cp-value,(x,) and cp-value,(x,) are the

same and the conditional interpretation of the two results with be the same. The

converse is also true as long as the LR (x;) <1 (i=1,2), i.e. identical cp-values imply

identical likelihood ratios.

Any reasonable (i.e. & <1) construction of a rejection region in terms of the cp-
value (x) can be re-written in terms of LR(x), and this translation is the same in all
log-symmetric cases. For instance, the regions {x: cp-value(x) < a} and
{x:LR(x) <%} are equivalent to each other. Thus, in the log-symmetric scenario,
any « bounded conditional test (& <1) is equivalent to the dichotomous likelihood
test where +=7%Z. Furthermore, cp-values in the significant range roughly
correspond to likelihood ratios also in the significant range (see plot below).

There is no conflict between the interpretation of y directly (as a likelihood ratio) and

through cp(y) .

¥ The real LP is not restricted to any locale — that is a big part of its force. However, the result given
here still represents a big change by comparison with conventional z-tests, which are only likelihood-

consistent across a class of cases where L 1;” d

all Normal location scenarios and even beyond.

is constant. In contrast, our tests are consistent across
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Figure 8.15

Log-symmetric case. A plot showing the
relationship between the conditional p-value
and the likelihood ratio statistic.
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The fact that only data with a likelihood ratio of less than one can possibly produce a
significant result for rejecting H in favour of K, and that only data with a likelihood
ratio™® of more than one can possibly cause us to reject K (as null hypothesis) in
favour of H (as alternative), can be seen as agreeing with that part of the Law of
Likelihood which states that, when the likelihood ratio is one, the evidence is neutral
between the two hypotheses. This contrasts greatly with unconditional inference
where data with a LR of one may be seen as providing strong evidence against one

hypothesis relative to another if it has a small p-value.

I all model/hypothesis-pair scenarios in existence were log-symmetric (which they
are not), it would follow that we could satisfy both the LL and the LP by carrying out
frequentist inferences conditional upon A=|InY |. Even the case where y >1 and the
cp-value is not a one-to-one function of the LR, could be dealt with by testing K (as

null hypothesis) versus H.

15 still meaning z—“
K
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Rejection areas in the (H,K)-plane.

We can illuminate the differences between the conventional and conditional

approaches to the Normal location case by observing the areas in the (¢4, ,) -plane
where H: =y is rejected in favour of K: x = u,, based on the data x (we use

o =1). We look first at the conventional 5% test.

Figure 8.16

Rejection area in the (mul,mu2)-plane of
| 5% z-tests (sigma=1).
u
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The main diagonal shows where z, = 4, ; we are only interested in values of (g, 1)
not on this line. The areas labelled ‘Reject H” indicate the values of (g, 1,) for
which the hypothesis x = 4, (being the null hypothesis) would be rejected in favour
of the alternative , , at the 5% level, based on the data x. The LR(x) equals one on

both of the diagonals and the rejection area contains some, but not all, of these points.
This shows that this approach breaches the likelihood principle (but not the SP, since

this applies only within a given test and each value of (¢, ,) corresponds to a

different test).
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The following plot shows the rejection areas for the conditional test using & =5%.

Figure 8.17

Rejection area in the (mul,mu2)-plane for the 5%
conditional test on the Normal mean (sigma=1).
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For the conditional test, the boundaries of the rejection areas are likelihood ratio

contours, in this case {(z4, 1,) : LR(X) =55}

We can also use plots to examine what happens when we reverse the order of the

hypotheses, i.e. when we are interested, both, in testing z4 (as the null value) against
the alternative, ,, and in testing x, (as the null value) against z, . The following

plot shows the results for conventional 5% tests. (For convenience, a hypothesis is

only ‘rejected’ when it is acting as null hypothesis.)

Figure 8.18

Conventional 5% ztest. Areas for rejecting
H(null) in favour of K and K(null) in favour of H.
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In the areas labelled ‘Reject K”, the hypothesis H (when null) is not rejected but the
hypothesis K (when null) is rejected. Note that there are some (g4, 1,) for which 5%

tests will, both, reject H in favour of K and reject K in favour of H, in both cases on
the basis of the same data x. This feature shows that the rejection of one hypothesis
in favour of another, even at a low significance level, cannot be interpreted as
indicating that the data constitutes strong evidence for the one hypothesis relative to
the other. Any reasonable conception of ‘evidence’ excludes the possibility that any
data can be, at one and the same time, strong evidence against H relative to K and

strong evidence against K relative to H.

The following plot shows the results when both tests are performed conditionally with
a=5%.

Figure 8.19
ul T I
X+5 — R RCa
SRS P
S, Reject H o
Mo, o
... \.”‘Mww*/ e
x+1.645 — ™, /
hY / .
x — RejectK i i ) {  RejectK
H Reject neither |
x-1.645 — yd Y
A .. .,
i S,
S e e
o Reject H e,
x5 —— - oy
T T T
x-5 X x+5
p2

The area where we reject H does not overlap with that where we reject K, thus
rejection of either hypothesis can be interpreted as telling us something about the
evidence. This is not surprising since the conditional test is equivalent to a test based
on the value of the likelihood ratio and this value can be interpreted directly as a
measure of evidence. Note that the area in this plot where the evidence is weak
(labelled ‘Reject neither’) is distributed among all four™® inferences by the

conventional approach (Figure 8.18).

16 ‘Reject H’, “Reject K, “Reject both’, “Reject neither’.
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8.8 Interval estimates.

Where there is an appropriate ancillary statistic for each and every binary parameter
space in the natural parameter space, we can use the conditional approach to produce
a conditional confidence interval (CCI) for @ based on the conditional tests. In the

Normal location case, there is an ancillary statistic of the form A=|InY | for any o

and any binary parameter space in R® hence we can find a CCI for . We do this by

using the following relationship between test results and intervals that applies in both

conventional frequentist inference and also in likelihood inference.

An interval at 'level 1(y) will contain a value of 8, 6,, if and only if
there does not exist any value 8’ € ® (the natural parameter space)
such that a test of H: 6 = g, versus K:0 = 6’ rejects H at the y level.

In likelihood inference, the level stated for a likelihood interval (L) is that of the

corresponding dichotomous tests, i.e. a + LI can be derived from the results of +-

level tests (thus 1(y) =y).

Conventional confidence intervals are able to play two roles simultaneously. Firstly,
these intervals have the property that, in the long run, they include € a given
proportion of the time (the coverage of the interval); and, secondly, they summarise
the accept/reject results of all possible tests of two simple hypotheses carried out at a
given significance level. These two features are connected by the relation:

coverage =1-2x significance level , i.e. 1(y) =100(1—2y)% . The coverage property

is uncontroversial but its usefulness has been called into question, partly, because it is
a property of the method with no implications for any observed confidence interval
derived from data'’, and partly because the existence of any ancillary statistic for the
natural parameter space can lead to the situation where we know that the success rates
of certain, identifiable, sub-classes of intervals are different from each other and from

the nominal (i.e. average) coverage. (For many years, the Welch example has been

17 See especially Pratt (1961), p.165 for a concise and witty discussion of why this is such a serious
shortcoming.
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regarded as the classic example of this phenomenon. We have shown that, while it
constitutes an interesting case, it does not provide a good argument in favour of
(Fisherian) conditioning, as is usually thought. A better instance of conditioning
solving the “variable coverage rates problem’ is given in our ‘Gradient Model’

discussed in Chapter 10.)

The more important role of intervals may, therefore, be as a summary of the results of
all possible tests. A simple formula for the confidence interval circumvents the need
to carry out many separate hypothesis tests. It follows that the interval is only as good
as the tests to which it is equivalent. The common expectation of intervals is that they
should contain all the “plausible’ values of & or ‘all values of & that are reasonably
consistent with the data’. In the absence of posterior probabilities, this has no easy
interpretation. However, we can certainly base an interval method on our conditional
tests. In that case the interval comprises just those values that are consistent with the
data in the very definite sense that ‘the data does not provide much more evidence for
any other hypothesis than for this one’. We know that a conventional confidence
interval does not satisfy this requirement because standard tests often reject a
hypothesised value based on data that does not constitute strong evidence against it in
favour of any alternative. It follows that values are excluded unnecessary from
conventional intervals, which are, as a result, shorter than likelihood intervals or
conditional confidence intervals. The shortness of the conventional interval tends to
be regarded as a point in its favour because it homes in on @ better than (say) a
likelihood interval. But this assumes an evidential interpretation that is not justified
by the unconditional methodology. Certainly intervals should not be wider than
necessary but it seems that our requirement that they contain all values consistent with

the data (as defined above) does make the extra length of the LI and CCI a necessity.
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Conditional confidence intervals for the log-symmetric case.

For any data, t, we can find an optimal conditional test (see 88.7) on any

©, = (1, 11,) and this produces a relevant significance level of o, =, (14, 11,) . Let™®

& = MmaX « ’ ’
(t.11)eR? (s 1t)

i.e. a is the achievable least upper bound on the relevant significance level of the

tests on all the various hypothesis pairs.

The CCI for the Normal mean, 4, based on the observed value of T ~ N(u,o?), and

corresponding to tests with an upper bound on the conditional significance level of &,

is given by:

t, +o\2In(E2).

Like the CI, and the likelihood interval (for this model), the CCI is symmetric around
the observation t,. Thus any such symmetric interval can be interpreted as either a

CCI, Cl or LI. Depending on the interpretation preferred, the rigor of the interval will

then be determined by either &, o or A (respectively).

The interpretations of six different intervals as likelihood intervals, conventional
confidence intervals (CI), or conditional confidence intervals (CCI) are shown below
in Table 8.11. For example (looking at the left-most column), the CCl using & =5%
is identical to the CI based on (one-sided) tests at « =0.76% (usually called a

98.48% ClI), and to the 3 LI for .. Note the two intervals at the right end of the

table. The likelihood and conditional interpretations of the 90% and 95%

conventional intervals suggest they are inadequate since + and & are too big.

'8 More generally, the upper bound on the conditional significance level is defined by

a= max a,(6,0;).
(6,.6,)<0”
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Table 8.11

CCl: 5.00% 2.50% 5.88% 3.03% 20.54% 12.78%
Cl: o 0.76% 0.34% 0.93% 0.42% 5.00% 2.50%
LI: 1/19 1/39 1/16 1/32 1/3.9 1/6.8

Nl

(Note: the & LI for x is: [t,xov2InA4|.)

The CCl and LI are in broad agreement (as are the analogous tests), since the CCI

with significance level bound, &, is the same as the < LI with =2, Thus & =1

a ' m

implies that 4+ =L, this means that conventionally significant values of & (say,

T (m-1)?

less than 55 ) are associated with significantly small*® values of <.

8.9 The Cauchy location model.

For tests about the mean of a Normal population, #=E(T), we find that, for any

binary parameter space, {4, 1, }, the statistic

A=[InY |=In LR(T; 4, 12,) || In{7-F233

is ancillary (in the restricted sense). We have called this property log-symmetry, and

it is not confined to the Normal location model.

If the density function of a variable X is given by

1

————, XeR, <R,
7+ (x-6)%)

f, (x;0) =

we say that X has a Cauchy distribution with location parameter 8 = median(X)
(and scale parameter one). By comparison with the Normal distribution, the Cauchy
has very heavy tails, as shown below®. (When ¢ =0 this distribution is also called

the T distribution with one degree of freedom.)

9 As judged by Royall, for example.
% The densities shown are Cauchy (6) and N(6,%).
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Figure 8.20

Comparison of Cauchy (solid line) and Normal densities.

As in the Normal case (for fixed o), the shape and spread of the Cauchy density is
unaffected by changes to @ and the density is symmetric. Let x be a single

observation from a Cauchy population, then, for any distinct values 6, and 6, , the
likelihood ratio of x is given by:

f . (x6) 1+(x—6,)

y=LR()= f(66,) 1+(x-0)

For any fixed ©, ={6,,6,}, define A=|6,-0,|>0, then VxeR, y=LR(X) liesin

the interval (1/k,k) where k =1(2+ A%+ AvV4+A?) and is greater than one. These

bounds are shown below as a function of A.

Figure 8.21

Bounds ony (as a function of delta).
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The Cauchy location model is log-symmetric.

It is clear that the statistic D =| X —@ | (where @ =%;%) has the same distribution
under each of the hypotheses defined by ®; ; this is true by symmetry, as in the

Normal case.

This case differs from the Normal case in that D is not a function of Y — the MSS —
it is thus not ancillary in the restricted sense. However, if A=|InY | can be shown to

be a function of D, then A must be ancillary in the restricted sense, since it is clearly
a function of Y .

A is a function of D if and only if D(x,) = D(X,) = A(X) = A(X,), VX, X, . Suppose
D(x)=D(x,)=d, then either x, =x, in which case A(x,) obviously equals A(Xx,),

or (WLoG) X, = (f# —d) and x, = (0 +d). If LR(x,) =[LR(x)]™ then A(x,) = A(X,) .

Let 6=60-6,=6,-60, (5eR), then:

_1+(0-d-6,)
S 1+(0-d-6,)?
14 (-6 -d)?
T 1+(5-d)’
_1+(5+d)?
C1+(d-6)?

LR(x,)

and

1+ (6 +d -6,)*
1+(0 +d -6,
1+(d -5y
T1+(0+d)
1

LR(x)’

LR(Xz) =
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Hence A(x)= A(x,). The following plot shows the relationships between these

variables, i.e. that A is a function of Y and A is also a function of D.

Figure 8.22

Plot showing the relationships betweeny, D and A
for the Cauchy location case.
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Since A is afunction of D, it must — like D — have the same distribution under both
hypotheses, thus the Cauchy random variable is log-symmetric. It follows that the

conditional probabilities of Y | A are those already derived for the log-symmetric case

and, hence, for y <1, and all {¢,,6,}, the p-value of y conditional upon

y
1+y)

A=a=|Iny| is cp(y) = , as in the Normal case, while, for y>1,

cp(y) =100%.

Proof that the p-value is less than the cp-value Vy e (£,k), V,,6,.

The conventional p-value is p(y)=F, (y), where F, is the distribution function of
the likelihood ratio statistic, Y , under the hypothesis (H) 6 =6,. For y >1,
cp(y) =100%, but (since Y is continuous with a positive density on the interval

+.,k)) p(y)<100% forall y <k, hence for 1<y <k, p(y)<cp(y).

To show that p(y) <cp(y) when y <1 we need to show that
Fa(Y)<yll+y), V6,06,
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In order to prove this result, we treat y <1 as fixed and allow A =6, -6, | to vary

within the bounds consistent with the observation of y, i.e. A>>(1-y)*/y. The

scenario is complicated by the fact that Y is not a one-to-one function of the natural

variable, as it was in the Normal case, instead there are two values of x (call them

X,(y) and x,(y)) associated with any given value of y .

P, (Y) = Ry (v;A) =2{tan *(x,(y) —6,) —tan*(x,(y) - 6,)}, where
LR(Xl(y);gligz) = LR(Xz(y);el’ez) =Y.

The latter equation can be solved to give:

(6% _.6a) yzxz 1/2
—6,= - -1
“W-6="y) {a—wz }

and

©,-6) [ ya* )"
4 = “1b
RW=6="0 ) +{(1—y>2 }

For fixed y <1, let*
g(a) = p,(y)

A SRS S k) 8 5 RS A et ) 8
T

-y -y -y 1-y)

Thus, for any given y, g is a function of A on the domain 3, z[‘l;yy',oo). If, for all

y <1, maxg(A)<y/(+y), then it follows that p(y)<cp(y), Vy<16,6,. Itis
Ae3,

straightforward to show that the function g has maxima at two turning points

occurring at A =+, /@ (and not on the bound of the domain); both turning points

produce the same value of g(A), i.e.

2! This expression is appropriate regardless of whether 0, is greater or less than 6, since

tan~(-u) = —tan"*(u) .
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max(@) = —{tan [ (2 4L y)]-tan T (B - VI,

Let UB(y) =max(g) . This is an upper bound on p(y) in the sense that, for all A
consistent with y, and for all y <1, UB(y)> p,(y). Thus, if
y/(1+y)>UB(Yy) (Vy<1), it follows that cp(y) > p,(y), as claimed. The plot,

below, shows that this is true.

Figure 8.23

Comparison of cp-value(y) and the upper bound
(UB) for all p-value(y) for the Cauchy location case.
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The gap between p,(y) and cp(y) is generally larger than the above plot suggests
since, for any given A (i.e. hypotheses), p,(y) is less than UB(y) for all observable

values of y other than y =2/(2+A?). The conventional p-values for the cases A =5

and A =10 are shown in the plot below. Note that the conventional p-values are
significant (less than 5%) for many values of y for which the cp-value is not. A
likelihood ratio of 0.4 = (viewed from a likelihood perspective) provides evidence
against H that is not much stronger than that which tossing a single head provides for
the two-headed hypothesis relative to the fair coin hypothesis. The cp-value of this
observation is 28.6% (for all A), which is consistent with the likelihood
interpretation, whereas the conventional p-values are less than 10% when A =5 and
less than 5% when A =10.
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Figure 8.24

Comparison of cp(y) and conventional p(y) for the
cases: (i) Delta=5; (ii) Delta=10.
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(Note that, for any given value of A, y is at least {2+ A* - Av4+A*}>0 which
equals 0.037 for A=5 and 0.010 for A=10. For the sake of simplicity, cp(y) and

UB(y) are shown as a functions of y >0 in the above plots.)

A limited range of likelihood ratios.

Example 8.3.

Consider a test of the form H: 6 =6, versus K: 0 =6, + % (forany 6, € R), thus
A= % and y e[$,2]. Inthis case, y takes a very narrow range of values; no data

supports either hypothesis over the other to any greater extent than the result head

favours the double-headed hypothesis over the fair coin hypothesis.
This can be seen in the following plot. The densities of X under H (solid line) and

under K (dotted line) are shown, together with twice the densities (in grey). For no

value of x, is either of the densities ever more than twice the other density.
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Figure 8.25
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A single observation on the random variable X is not a good basis for choosing
between these particular hypotheses because X behaves in much the same way
regardless of whether it is H or K that is true. This flaw in the design of the
experiment is reflected in the power of the conventional test (see below??), but not in

the range of the p-value.

Table 8.12

Sig. Level, « | CLR* Power, x

1% 0.500370 | 1.999%

5% 0.509233 | 9.939%

[* Critical likelihood ratio.]

The fact that the power is very small — only about twice the significance level —is a
flaw in the design of the experiment but is usually regarded as affecting the inference
only by limiting our ability to infer anything useful from a failure to reject H. Note

that, if we were to observe a value of y <0.50037, we would reject H at the 1% level,

22 These values are found by numerically solving the equation:

-1 -1

Ro(Y) =2{tan (0 -0+ 7+ oy~ -tan (6, -0+ 7 — Iz 1)}
to find

a) CLR:F ,(CLR)=a, and

b) K= \(glJrl (ya)'
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this result would appear to be truly significant since the probability of Type I error is
small (1%), unlike the probability of Type Il error.

This type of problem can occur in any case where the likelihood ratio statistic, Y , is a
(non-degenerate) continuous statistic. No matter how restricted the domain of Y,

there will be some observable values of y that produce statistically significant results

since p(y)=F, ,,(y)—>0 as y—y,_ (its lower bound). This is not true of cp-values.

In any log-symmetric case, cp(y) =5y (Vy <1) and thusif y is bounded below by

(I+y

some vy, it follows that cp(y) is itself bounded below by the value (1+V;L). In the

present example y, =+ and thus cp(y) can never be less than 33%; no data that can

be obtained from this poorly designed experiment will be interpreted as significant

evidence for rejecting H in favour of K, if the inference is made conditional upon A.

The cp-value reflects the facts about this scenario — the limited range of likelihood
ratios — much more accurately than does the p-value. The following plot shows the
minimum possible value (over y) of cp(y) as a function of A=6, -6, |, in the
Cauchy case. For any given value of A and y <1, cp(y) must lie above the curved
line. The smaller A is, the more restricted are the possible values of y (i.e. the more

similar the distributions of X under H and K), and the more limited the range of cp-

values; it is not possible find a cp-value of 5% (or less) when A< 4.

Figure 8.26

Cauchy location model. Minimum possible
value of cp(y) as a function of delta.
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10% —|
5% —|
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However, disparities between the likelihood ratio and the p-value do not only occur

when the hypotheses are close together.

Example 8.4.

Consider a test of H: 9 =0 versus K: #=10. In this case, y can be observed
anywhere in the interval [;3;,102], so it is possible to observe data that provides

strong evidence against H relative to K (or vice versa). Does this mean we can
confidently interpret a small p-value as such evidence? Suppose we observe x =6

(shown below).

Figure 8.27

03 —

(%)

02 —

0.1 —

0.0

Itis clear that x =6 is only slightly more consistent with K than with H. We can

confirm this by calculating the likelihood ratio y, =0.4595 =5-. Thus, again, the

evidence is of about the same weight as that from a single head in the paradigm coin-

tossing example. The cp-value is not significant: cp(y)=31.5%. However, the
conventional p-value of this observation is 4.32%. Even though y can take values
that are much smaller than the observed y, =0.4595, the (unconditional) probability
of these values is so small that P, (Y <0.4595) =4.32% . Thus the observed value vy,

is relatively small (probabilistically speaking) and so produces a significant result
even though it is not actually small and there are observations with much smaller

likelihood ratios. When we condition on |InY |, this effect is greatly mitigated.
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Averaging over unobserved values.

As always, the conventional p-value (or significance level) is the mean, over a, of the
conditional probabilities (or levels). Since only one value of a is observed in any
given experiment, it is inappropriate to quote the average over all possible values.
Consider again the above example where A=10. If we observe the data y, =0.4595,
then the unconditional p-value is significant at 4.32%. The various conditional
probabilities that go to make up this unconditional probability are:

p(@)=P, (Y <0.4595| A=a), a<(0,In102].

If f, is the density function of A, then the conventional p-value can be written as:

In102

p(04595) = | p(a)- f,(@)da=E(p(A).

0

We can define the conditional probabilities p(a) for every value of a, but note that
only one of these probabilities is a conditional p-value — namely, p(a,) where
a, =/In0.4595|. (To find a cp-value, we condition on the value of a that actually

occurred.)

Why is the p-value so small?

We can see why conditioning makes such a difference when we will look at the values

of p(a) associated with different values of a.

Figure 8.28

Cauchy location example (delta=10).

In(0.4595)|

50%_|
40%_|
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p(a)=0 unless a<a, =In0.4595|~ 0.78, since is it possible to observe y <0.4595

only when a is in this range. Thus many of the values in our average are zero,

although the value that we observed, p(a,)=cp(y,), is not.

The other influence on the overall average is the distribution of the ancillary statistic

A. The following histogram shows the distribution of A simulated from a sample of

3000 instances.

Figure 8.29

Cauchy location example (delta=10).
Simulated density of A=|InY]|.

a0=[In(0.4595)|

The values of a for which p(a) =0 have a very high probability and this affects the
conventional p-value, which is the expected value of p(A).

We can identify E(p(A)) from the (simulated) distribution of the random variable,

p(A).
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Figure 8.30

Cauchy location example (delta=10).
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There is a large probability mass associated with the value o =0, this is so great that
the densities associated with the other possible values of p in [0.315,0.5) barely show
on the histogram. Clearly the high probability that p =0 has a huge effect on the
mean, E(p) =p-value, and drags it down towards zero. Before the experiment, the
probability that we would observe a case where p =0 was very high; this fact
dominates the conventional p-value, even though, in our particular case, p turned out

to be 31.5%. Only by using the cp-value can we remove the influence of the
unobserved values of A, and, hence, of p(A) 23 Before the experiment, there was a
high probability that A=|InY | would be large, i.e. that Y = LR(X) would be very
large or very small. This reflects the fact that the two hypotheses are far apart and the
bulk of the observable x -values are much more likely under one hypothesis than the
other. Insuch a case, we have a high expectation that the data we observe will
provide definite evidence one way or the other. However, if we are unlucky, the
experiment will produce data that is not much more likely under one hypothesis than
the other. In such a case, we should accept that this has happened and not attempt to

modify the result by including the more definite evidence that we might have, but did

B since o (A) isafunction only of A, it is also ancillary in our sense and we can think in terms of
conditioning on the observed value of o if we wish (the results are the same). Note that this only

applies when we are interested specifically in the p-value of the data y = 0.4595, since p was
defined for this purpose. That p can not be used as an equivalent general purpose ancillary statistic is

evident from the fact that it is not a one-to-one function of A.
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not, observe. Using the average p-value instead of the conditional p-value amounts to
quoting the strength of evidence that we deserved to get (in view of our experimental

design), rather than that actually produced by the experiment.

Generalisation.

We can make the Cauchy model more general by allowing a scale parameter other
than one. If X is Cauchy with a known scale parameter, o, and median 8 which is

the parameter of interest, then

f, (x;0,(0)) = xeR, R, (6>0).

__o
W)

Our discussion generalises to this case.

8.10 Other log-symmetric scenarios.

We will briefly mention some other models that are log-symmetric so that the same

relationship exists between y = LR(x) and cp-value (x) as in the Normal and Cauchy

location cases.

The Logistic (location) model.

Consider the continuous random variable, X , with density dependent on the location
parameter, @, and a fixed, known scale parameter £ according to:
o (0B

W, xeR, R, ﬂER+.

fy (%.6,(5)) =

Then X has a logistic distribution and its density is symmetric around &, as shown

below.
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Figure 8.31

Logistic density (beta=1).
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For a test of ¢, versus 6,, the likelihood ratio of a single observation, x, is given by:

e(%fﬁz)/ﬂ{l_l_ ef(xfﬂz)/ﬁ}Z
{1+ e—(X—91)/ﬂ}2

y=LR(x)=

Y is a continuous variable on the support (4% %) and, since |Iny| is symmetric

around @ (shown below), is follows that this model is log-symmetric.

Figure 8.32

Plot of |In y| vs x for the logistic location model.

Iyl

Thus, for all (6,,6,) e R* and B >0 (fixed), cp(y) is the same function of y as in

the Normal and Cauchy cases.
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The Double-exponential (location) model.

Consider the continuous random variable, X , with density dependent on the location

parameter, @, according to:

f (x;0) =1exp{-|x-@[}, xeR, fR.

The plot below shows the densities of X under H:#=0 and K:0=2.

Figure 8.33

Densities of the Double-expo variable
under Hand K.

Although X is a continuous variable (V&), Y = LR(X) is not, since (for instance)

when 6, <6,

texp{-[x=6,1} _ {exp{+ 160,-6,} x<6,
%eXp{_l X _92 |} exp{— | ‘91 _Hz |}, X> ‘92'

This is shown in the following plot.
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Figure 8.34

y=LR(x)

y e’ ~7.4, x<0
e?~0.14, x>2.

Thus P, (Y =e?)=P,(X >2)>0,i.e. Y has positive probability mass at e and e*.

Y is partly continuous and partly discrete. However, by symmetry, it is easy to show

that | InY | (which is also partly discrete) still has the same distribution under H and K
and hence this model is log-symmetric for all {6,,6,} € R*. It follows from this that
the same relationship between cp-value (x) and LR(x) applies here as in the Normal,

Cauchy and Logistic cases.

The Bernoulli model with symmetric hypotheses & stopping rules.

We now look at two models where Y is discrete.

Consider a series of independent Bernoulli trials each resulting in either success or

failure with constant probabilities p and (1— p) respectively; the parameter of
interest is p. The trials continue until brought to a halt by the stopping rule, R. We

consider only that subset of this class of experiments satisfying both the following

conditions:
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e The binary parameter space for p is of the form (8,1-6), where 6 € (0,1).

e The stopping rule, R, is ‘symmetric’ in the following sense: If we were to
define a second stopping rule by swapping over the roles played by success

and failure in the definition of R, the two rules would have the same meaning.

Suppose a model/hypothesis-pair satisfies these requirements, then that case is log-

symmetric, i.e. |InY | is ancillary, in the restricted sense, on the binary parameter

space. We prove this below.

Let U =#successes, V =# failures (thus #trials=U +V ), then (U,V) isa

sufficient statistic for p. Then,

P[U,V) = (u,v)]=Cg(u,v) p*@- p)’, where (u,v) eg’, ¢, ={0,1,2,..}.

Ci (u,v) is a combinatoric term, (based on the rule, R) which counts the number of

ways in which the experiment can end with the result “ u successes and v failures’.

Without loss of generality let H: p =6 and K: p=1-¢ then

y = LR(u,v) = 42 = exp{(u—V)-In(z%;)}-
Hence, [InY | U -V)-In(%) |.

Since @ is a constant, this is a one-to-one function of |U —V | which is an equivalent

ancillary statistic. To show that this case is log-symmetric, we need to show that

|U —V | has the same distribution under both hypotheses.
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First note that, because the rule, R, is symmetric, C.(i, j) =C;(j,1), Vi, j. Hence,

P(U-V|=a)=P[U-V)=a]+P[(V-U)=a]
m(a) m(a)

= > Cpa+v,v)p*'(1-p)' + Y. Cqlu,a+u)p’(d-p)**

v=I(a) u=I(a)

m(a) m(a)

= Y Cia+v,v)p*(1-p)’'+ D, Cpla+u,u)p’(@-p)*

v=I(a) u=l(a)

m(a)

= Z CR(a+ i, i)[pa+i (1— p)' + pi(l_ p)a+i].
i<I(a)

(The bounds I(a) and m(a) dependingon R and a.)

P,(U-V|=a)
= ria) CR (a"r‘ i, i)[eaﬂ (1— 9)' + ai (1_0)a+i],
i=I(a)

and

P(U-V|=a)
= ria) Cepla+i, N(-6)*"0' +(1-6)'6*"]

i=I(a)

=R,(U-V a).

Thus, this is a log-symmetric scenario of which Birnbaum’s Binomial example with

p, + p, =1 (discussed in Chapter 5) is a special case.

While the best-known symmetric stopping rule is the rule (fixed n) that gives rise to
the Binomial distribution, it is easy to define many other such rules; for example,
‘sample until there are at least twice as many outcomes of one kind as the other’ or
‘sample until there are equal numbers of successes and failures or n=100". Clearly
the range of rules is very varied as are the sample spaces to which they give rise; it
follows that a given experimental result will often produce very different
(conventional) p-values, depending on which rule was used. However, if we

condition on the observed value of |InY |, the cp-value of any given data will be the

same regardless of which symmetric stopping rule was used. This is immediate from
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the fact that any given data uniquely defines (u,Vv), which, in turn, defines y (shown
above), and hence cp(y) for the log-symmetric case. Thus, conditioning removes the

effect that the stopping rule®* has on the interpretation of the data.

The Uniform location (Welch) model.
Finally, we note that the Welch example, X =(X,,..., X,) where
X, ~Uni(@—%,0+1), is log-symmetric for all {6,,6,} < R?, as we showed in Chapter

6. This is still true if we let X, ~Uni(6—c, 8+ c) for any fixed, known c.

Summary.

The following are all log-symmetric test scenarios:
a) Normal location test with any variance and hypotheses.?®
b) Cauchy location test with any scale parameter and hypotheses.
c) Logistic location test with any scale parameter and hypotheses.

d) Double-exponential location test with any scale parameter and

hypotheses.

e) Test on the Bernoulli probability based on independent Bernoulli trials

with a symmetric stopping rule and hypotheses such that p, + p, =1.

f) Test on the location of a Uniform mean with any known spread and any

hypotheses.

Any observed likelihood ratio is interpreted the same way by the cp-value, based on

the ancillary statistic | InY |, in all of the above cases.

24 Among this class of rules.
%5 Simple hypotheses.
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8.11 Why the cp-value is larger than the p-value, in all log-

symmetric cases.

When we condition on the ancillary statistic, A=|InY |, the cp-value of any data is

always greater than the conventional p-value. This is surprising on two counts:

i. It contrasts with the conditional significance levels. These vary around the
unconditional significance level (their mean), so that they are sometimes

greater and sometimes less than the nominal level.

ii.  In Cox’s example of two Normal populations, it is clear that the unconditional
p-value of any observation is the mean of the two conditional p-values. So, in
that case, the cp-value is sometimes greater than the p-value and sometimes

less, depending on which of the two populations we observed.

Why does the log-symmetric case produce such different results?

To answer this question we need to consider a fairly general version of the
conditioning scenario. Suppose that we want to perform conditional inferences based
on some statistic that has the same distribution under both hypotheses in the binary

parameter space. All data can be transformed into the form (y,a) where y is the

likelihood ratio of the data and a is the observed value of the ‘ancillary’ statistic
being used®®. If A is ancillary in the restricted sense, it will be a function of the MSS,
Y , and the second part of this expression will be redundant, however, we will keep
the more general formulation since, when Cox’s example is applied to a binary

parameter space, A is not a function of Y (and is not ancillary in the restricted sense).

Suppose that we observed data corresponding to (y,,a,); the conditional p-value of
this data is cp(y,,a,) =P, (Y <y, | A=a,) (which may need to be defined in the

limit).

% Note that (Y, A) is sufficient since Y is minimal sufficient. A is possibly ancillary in the
unrestricted sense of having (only) the same distribution for all & in the parameter space.
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The unconditional p-value of the data is:

P(Yo:3) =Py (Y <¥o) =[Py (Y <y, | A=) f,(a)da

(This value will be the same for any observable value of a, consistent with y,.) Thus
p(y,,a,) isthe mean, over a, of the conditional probabilities P, (Y <y,|A=a). It
follows that these probabilities must vary around p(y,,a,), but these probabilities are
not conditional p-values of y, since a cp-value involves only values y, and a that

correspond to some observable data.

For a fixed y, and any given value of a we define

Y, (a) = max{y: (y,a) corresponds to some observable data} .
Y<Yo

Thus y,(a) is the largest value of y, not exceeding Y, , with which we may observe

the ancillary statistic taking the value a.

Then, when y,(a) exists, B, (Y <y,|A=a)=P, (Y <y,(a)| A=a) =cp(y,(a),a),

i.e. itis the conditional p-value of the observation corresponding to (y,(a),a).

If, for some a, no such y,(a) exists, then B, (Y <y,| A=a) =0 and is not the cp-

value of any possible data.

Removing the expressions that are equal to zero, we can re-write p(y,,a,) as:

Poag)= [ cop(yy(a).a)- f,(a)da.

azyy(a) exists.

This is not necessarily a mean over a since it may not cover all possible values of a

(i.e. I f,(a)da may be less than one).

azyy(a) exists.
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Cox’s case.

A special case occurs when the conditional distributions of Y given the various
values of A all have the same support, i.e. every possible value of Y is observable
with each and every different value of A. (This can not happen if A is a function of

Y #') Insuch a case, for all y, and a, y,(a) exists and is equal to y,. This is true in

Cox’s case where the two values of a correspond to Normal populations with
different variances. Any two hypotheses about the mean of a Normal population will

produce likelihood ratios everywhere in the interval (0,) regardless of the variance;
thus y e R* for both a=1 and a=2, and hence

Y, (a) = max{y : (y,a) corresponds to some observable data}=y,, Va.
Y<Yo

As a result,

P(Yo:80) = [CP(¥5,)- fa(a)da, V¥o,8,.

The p-value of y, is thus the weighted mean of the conditional p-values of y, so that
the conditional p-values of y, for all (i.e. both) the possible values of a vary around

the unconditional p-value, one being larger and one smaller than the unconditional

value.

In general, however, all we can say is that

P(Yodo)= [ cp(¥o.a)-fu@da+ [ cp(y,(a).a)- fu(a)da.

ayp(a)=Yo ayp(a)#y,

The first part of the sum integrates over those values of a for which y,(a) =y,, i.e.
values of a that are consistent with the observation of y, ; the second part integrates
over those values of a that are not consistent with y, but are consistent with some
value of y less than y, (and hence y,(a) exists); the cp-values in this component are
not cp-values of y, . The weights, f,(a), in these expressions will not necessarily

sum to one across the two integrals since there may be values of a (with non-zero

2T1f A is afunction of Y, there is no overlap between the supports of the conditional distributions of
Y ; in other words, A partitions the unconditional support of Y .
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density or probability) for which no y,(a) exists. All the cp-values of y, are

included in the first integral. Given the varied nature of the rest of the expression and
of the weights in both parts, we cannot make any general statement about the

relationship between the conventional p-value, p(y,,a,), and the conditional p-
values, cp(y,,a,); in particular, it is not necessarily the case that the cp-values vary

around the p-value.

We have already shown that the cp-values do not vary around the p-value in the

Normal case where A=|InY |; in this instance, A partitions the (unconditional)
support of Y so that any value of y is consistent with only one value of a and
Y.(@) =y, onlyif agIny,|. (Infact, for y, <1, y,(@)=e"* where a<|Iny,| and

IS non-existent otherwise.)

Contrast with significance levels.

When it comes to significance levels the situation is a little different. A test that

rejects H in favour of K whenever Y <y_, has a significance level (conditional or

unconditional) that is calculated by reference to the fixed critical likelihood ratio

value, y., regardless of the data observed. Thus the unconditional significance level
is the mean of all the possible conditional significance levels, since

a=P,(Y<y) =[P, (Y <y, |A=2) f,(@)da=[a,- f,(a)da.

The difference is due to the fact that P, (Y <y,| A=a) is a cp-value of y, only ifitis
possible to observe (y,,a), whereas P, (Y <y, | A=a) can be regarded as the

significance level of the test, conditional upon A=a, even when A=a is

incompatible with Y =y, or, indeed, Y <y.. This approach is correct in terms of

identifying the failure rates associated with different values of A.
We have shown that for the Normal and Cauchy location models, the cp-value is
always greater than the conventional p-value. We now show that this is true for any

scenario that is log-symmetric.
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Proof that the cp-value is greater than the p-value in all log-

symmetric cases.

Let y, be the least upper bound on the support of the unconditional distribution of Y,

i.e. it is the smallest value of y such that P, (Y <y)=1%. (In the Normal case

Yy =)

Claim.

In any case where A=|InY | has the same distribution under hypotheses H and K, it
follows that Vy <y, the p-value conditional upon A=|Iny| will be greater than the

unconditional p-value of y, i.e. cp(y) > p(y).

Proof.

Assuming that Y is not degenerate at one, Yy, >1 because, otherwise, f,(y)< f,(y)

everywhere, and they cannot both integrate to one.

In any log-symmetric case,

100%, y>1

cp(y) = {L y<1.

+y)?

First note that if y =1y, then cp(y) = p(y)=100% so, even in this case,

cp(y) £ p(y). If1<y<y,, then, cp(y) =100% while p(y) <100% (since

y <y, =min{y: p(y)=100%}) and hence cp(y) > p(y).
y

Now consider the case where y <1. (The following is written in terms appropriate for

a continuous A ; for the discrete case replace the integral and density with a sum and

probability.)

%8 In the next chapter we will show that the cdf of Y under K is always greater than the cdf of Y under
H, thus P, (Y <y)=1= P (Y <y)=1.
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P(Yo) =R, (Y <Y,)
= [P,(Y <y, |A=a)- f,(a)da

If y<1,then a=|Iny|=-Iny. Thus, if y, <1, it follows that y <y, if and only if

a=-Iny>-Iny,. Hence it follows that:

e, a>Ilny,|=-Iny
Yo (a) = . .0 0
non-existent, otherwise.

Thus
p(y)= [ cp(y,(a)- fu(a)da

azy,(a) exists.

j cp(e®)- f,(a)da

ax-Iny,
e—a
= —_a' f (a)da
j.y L+e?) *

e—a
j e f,(a)da

j f,(a)da
e—A
E[m| A>—In yOJ
=E(h(A)|A=~Iny,)

az-Iny,

—a

is a decreasing function of a and thus, when a is in

Now note that h(a) = €
@+

=

the range [-Iny,,), the maximum value of h(a) is h(-Iny,) =(l+y—°y()). Since this is

the maximum value, it follows that the mean must be less than it, i.e.
E(h(A)|A>-Iny,) <. Hence p(Y,) <y =CP(Yo) -

(+Yo)

Thus, in all log-symmetric cases, the conventional p-value of any observation
overstates the significance of the data, in that, it is smaller than the relevant p-value of
the data.
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8.12 Comments and summary.

In this chapter we have described a number of scenarios where the statistic

A=InY |5 In{LR(X;8,,6,}| is ancillary, in the restricted sense, on the binary
parameter space ®, ={6,,06,}, that is, it has the same distribution V8 € ®, and is a
function of the MSS for 8 € ®, (i.e. Y ). Inall but the Bernoulli case this is true for

all possible binary subsets of the natural (or conventional) parameter space and thus it
is possible to define the conditional confidence interval based on A (88.8) as well as
conditional hypothesis tests. Of the cases examined here, the Normal location case is

the most general and useful, because it applies to random samples of all sizes through

the relation X, ~ N(z,0°) =T =X ~N(x,%).

In all the scenarios covered in this chapter, a single relationship connects the p-value
of the data, conditional upon a, to the likelihood ratio of the data, in stark contrast to
the lack of association between the conventional p-value and likelihood ratio. It
follows that, in each case, any given value of the likelihood ratio is interpreted (via the

cp-value) the same way, despite the differences between the various model/©,

combinations.

The conventional significance level of any test can be understood as the before-
experiment expected value, over a, of the conditional significance levels associated
with the various possible values of a. We have illustrated this relationship in the
Normal (88.6) and Cauchy (88.9) cases. The p-value is also the expected value (over

a) of certain conditional probabilities, which include the cp-value.

Whenever data, X, is in the « -level rejection region of a test but does not constitute
strong evidence against H relative to K (i.e. LR(x) «1), it follows that the relevant
significance level of the test, «, (where a=|InLR(X)|), is unreasonably large, even

though « is not (see Example 8.1). Thus the conditional significance level of a test

is consistent with our intuitions about the quality of that test.
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An important feature of many ancillary statistics is that they function as ‘precision
indices’, distinguishing between categories of more and less informative data (see
Buehler (1982) for a formal definition of this concept). In this connection we remark
that, if Y is a measure of the weight of evidence in favour of H relative to K, then
A=|InY | is a measure of the absolute weight of evidence between the hypotheses
(one way or the other) — each value of a being associated with a set of data points
{x: A=a} that is homogeneous in terms of the weight of evidence between the two
hypotheses. A also indicates the size of the conditional error probabilities. For any

a, if y, <1 is asolution of the equation |Iny |=a, then the test that rejects H if and
only if y =y, isthe only non-trivial conditional test of H versus K (i.e. the only test

where neither of the conditional error probabilities is 100%). Such a test has equal
conditional error probabilities and these are decreasing in a; when a is larger we can
test both H (as null) versus K and K versus H and achieve lower error probabilities
than when a is smaller — thus we might describe A as an ‘error index’ and this can

also be seen as a measure of precision.
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