
 Chapter 9: Exhaustive ancillary statistics for more general cases. 

 253

Chapter 9: Exhaustive ancillary statistics for more 
general cases. 

 

9.1 When a testing scenario is not log-symmetric. 

 

In the ‘two machines’ scenario, each machine has a given probability of being picked 

and this is constant under H and K.  This feature is necessary if we are not to lose 

information in the process of conditioning upon the choice of machine.  If a statistic 

possesses this feature, the argument for conditioning upon its observed value is 

compelling.1 

 

In Chapter 8 we identified a number of cases where the statistic | ln |A Y=  has the 

same distribution under H and K; this statistic is also attractive on the following 

grounds. If the likelihood ratio, Y , is a measure of the evidence for H relative to K, 

then 3y =  indicates the same evidence, for H relative to K, as 1
3y =  does, for K 

relative to H.  Thus we may say that | ln |y  measures the weight of evidence 

favouring (either) one hypothesis over the other, i.e. it indicates the degree to which 

the data distinguishes between the two hypotheses.  By conditioning upon | ln |Y  we 

can take into account how informative our data is (to the question at issue), rather 

than using results that average over subsets of the sample space that were not 

observed and are more informative or less informative than our data.  However, this 

option is only available when | ln |Y  is ancillary, which is not always the case. 

 

In general, if | ln |A Y= , the density function of A  ( )Af  is related to the density 

function of Y  ( )Yf  by 

 1 1(ln ) ( ) ( ).A Y Yy yf y y f y f= ⋅ + ⋅  

 
                                                 
1 It sometimes seems appropriate to condition on a non-ancillary statistic on the basis that we narrow 
the sample space down to observations with (in some sense) the same level of reliability as our own.  In 
order to make a case for this, it is necessary to argue that the conditioning process accesses more 
(extra) information than is lost by the conditioning; this is a much harder case to make.  
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To show that | ln |Y  is not always ancillary, we need only consider the exponential 

model: 

 /1( ; ) ,  0,  0,x
Xf x e xθ

θθ θ−= > >  

  

with hypotheses H: 1θ =  versus K: 2θ = .  The likelihood ratio takes values in the 

range (0, 2)y ∈ .   Now consider the event | ln | ln 3A Y= = , which is equivalent to 

1
3{ ,3}Y ∈ .  In the exponential case, (3) 0Yf =  since ‘3’ is outside the domain of Y  

and hence 1 1
3 3(ln 3) ( )A Yf f= .  This value is not the same under the two hypotheses, 

since 1
3( )Yf  has one-third of the value, under H, that it has under K, by definition of 

Y  as the likelihood ratio.  A  is not ancillary and | ln | ln 3Y =  is a result that favours K 

over H; we would lose this information if we conditioned on the event.   

 

Can we identify ancillary statistics that can be used as the basis of conditional 

inference in those cases where | ln |Y  is not ancillary and therefore cannot be used?  

In particular, can we identify statistics that are exhaustive as well as ancillary, i.e. that 

partition the support of Y  into sets containing only two elements? 

 

In this chapter, we show that, whenever Y  is a continuous variable, we can identify 

such a statistic. 

 

9.2 The ‘difference of distribution functions statistic’. 

 

Theorem identifying an exhaustive ancillary statistic on a BPS. 

Preliminaries. 

 

Consider a parameter of interest, θ , defined on a parameter space Θ .  For a given 

value of θ , the distribution of the random variable X  is completely specified.  We 

consider competing simple hypotheses of the form H: 1θ θ=  versus K: 2θ θ=  where 
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1 2 and θ θ  are any distinct members of Θ , defining the binary parameter space (BPS): 

1 2{ , }B θ θΘ = . 

 

Define the likelihood ratio statistic for H versus K as: 

 1

2

( ; )
( ; ) ( ),g X

g XY LR Xθ
θ= =  

where ( ; )g x θ  is the density of x  given θ .   

 

Define Hf  and Kf  as the density functions of Y  under H and K respectively.  Note 

that Y  is its own likelihood ratio as well as the likelihood ratio of X , i.e. ( )
( )

H

K

f Y
f YY = . 

 

Since Y  is the MSS of Bθ ∈Θ , we can base our inference on the value of y , rather 

than x , with no loss of information. 

 

Theorem. 

 

Suppose that the likelihood ratio statistic, Y , is a continuous variable2 under both H 

and K, and ( , ) (0, )c d ⊆ ∞  is the shortest interval containing both the support of Y  

under H and the support of Y  under K.  It follows that 1c d< < . 

 

Define  and H KF F  as the distribution functions of Y  under H and K respectively, i.e. 

( ) ( )
y

c

F y f r dr= ∫ .  Note that ( ) ( ) 0H KF c F c= =  and ( ) ( ) 1H KF d F d= = . 

 

Define the difference of distribution functions statistic (DDF statistic) as: 

 

 ( ) ( ) ( ).K HD Y F Y F Y= −  

 

Then this statistic is an exhaustive ancillary statistic on BΘ . 

                                                 
2 Except that Y  may have a positive probability mass, p , at 1y = . 
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Proof. 

 

From the definition of Y  as the likelihood ratio statistic, it is easy to show that ( )D y  

is a continuous function of y , taking non-negative values on ( , )c d , with a maximum 

turning point at 1y =  and no other stationary points.  Its maximum value is 
1

(1) ( ) 1K
c

D F r dr= <∫ . 

 

Figure 9.1 

1

0

y2y1

D(y1)=D(y2)=a

y

Plot showing the general features of the DDF
statistic as a function of the likelihood ratio, y.

D(y)

 
 

Hence, for any (0, (1))a D∈ , the equation ( )D y a=  has exactly two distinct solutions 

in y , say 1y  and 2y , where (WLOG) 1 21y y< < . 

 

To show that ( )D Y  is ancillary, we must show that it has the same distribution under 

H and K. 

 

The value of the distribution function of ( )D Y  at a  is ( ( ) )P D Y a< . 

 

1 2( ) ( )a D y D y= = , hence ( )D Y a<  if and only if either 1Y y<  or 2Y y>  (see Figure 

9.1 above), thus: 

 1 2

1 2

( ( ) ) ( ) ( )
( ) 1 ( ).

P D Y a P Y y P Y y
F y F y

< = < + >
= + −
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 It follows that  

 

1 2 1 2

2 2 1 1

2 1

( ( ) ) ( ( ) )
{ ( ) 1 ( )} { ( ) 1 ( )}
{ ( ) ( )} { ( ) ( )}

( ) ( )

0,    ( ).

H K

H H K K

K H K H

P D Y a P D Y a
F y F y F y F y
F y F y F y F y

D y D y
a a

a

< − <
= + − − + −
= − − −
= −
= −
= ∀

 

 

That is, for all a  in the domain of ( )D Y , the distribution function of ( )D Y  at a  is the 

same under the two hypotheses, hence ( )D Y  has the same distribution under H and 

K.  ( )D Y  is a function of the MSS (i.e. Y ) and is thus ancillary on BΘ , in the 

restricted sense.  Since it partitions the sample space of Y  into sets containing exactly 

two values (except for the set {1}), it is an exhaustive ancillary statistic. 

Q.E.D. 

 

 

Range of application of the methodology given in this chapter. 

 

The theorem developed above is always applicable when the following conditions are 

met. 

 

Under both hypotheses, the LR statistic, 1

2

( ; )
1 2 ( ; )( ; , ) X

X

f x
f xy LR x θ

θθ θ= = , is a continuous 

variable, except that it may have a positive probability mass at the point 1y = . 

 

This, in turn, is satisfied by the following condition, in terms of the natural statistic, 

X .  Let the natural variable, X , be a continuous random variable on the 

support, ( )Xς θ  (possibly dependent on θ ), and with density ( ; )Xf x θ . Then, for 

1,2,i =  there should not be any interval, ( )X iς θΙ ⊆ , such that 1 2( ; , )y LR x θ θ=  is 

a constant not equal to one, for all x ∈Ι .   
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The following type of well-known structure satisfies these requirements.  Suppose X  

has densities that are regular cases of the exponential class of continuous type so that 

the following conditions are met.   

The natural parameter space, ( , )γ δΘ ≡  is an interval, and  

 ,  ( ; ) exp[ ( ) ( ) ( ) ( )],  Xf x A B x C D x a x bθ θ θ θ∀ ∈Θ = + + < < , 

where  

• neither a  nor b  depends on θ , 

• ( )A θ  is a non-trivial continuous function of θ , 

• both '( ) 0B x ≡/  and ( )D x  are continuous functions of x . 

 

In this situation, our condition is equivalent to requiring that (for 1 2,θ θ ∈Θ ) there be 

no interval ( , )a bΙ ⊆  such that ( )B x  equals some constant, 2 1

1 2

( ) ( )
( ) ( )

C C
A Ac θ θ

θ θ
−
−≠ , for all x ∈Ι .  

(A version of this condition can be extended to the regular exponential class where θ  

is a vector rather than one-dimensional.) 

 

 

Examples of cases where our method is applicable. 

 

Suppose ~ ( , 4)X N µ , and thus a member of the regular continuous exponential class 

with: 4( ) ,  ( )  A B x xµµ = = .  Clearly, there is no interval, Ι ⊆ , such that ( )B x x=  is 

constant for all x ∈Ι , hence we can apply the theorem to all 1µ  and 2µ  for this 

model. 

 

Let X  have an Exponential distribution with a mean of θ , i.e. 1( ; )
x

Xf x e θθ θ
−−= . 

This density is a member of the regular continuous exponential class with 1( )A θθ = −  

and ( )B x x= .  Again it is clear that we can apply this theorem to all binary parameter 

spaces associated with the model.  
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A note on the Fisherian structure of the DDF statistic. 

 

The DDF statistic is ancillary (on BΘ ) in the restricted sense but it also satisfies 

Fisher’s more stringent notion of ancillarity. 

 

A Fisherian ancillary statistic3, F , has the same distribution for all θ  in the given 

parameter space, Θ , and also satisfies ( , )≡S F M , where S  is the MSS of θ ∈Θ , 

and M  is the maximum likelihood estimator of θ ∈Θ . 

 

To see that ( )D Y  is a Fisherian ancillary statistic on BΘ , recall that Y  is the MSS.  

The maximum likelihood estimate of Bθ ∈Θ , based on y , is whichever of 1θ  and 2θ  

has the higher likelihood when Y y= .  Thus the MLE of Bθ ∈Θ  is: 

 1

2

,  if 1
( )

,  if 1.
y

y
y

θ
θ

>⎧
= ⎨ <⎩

M  

 

The MSS, Y , is equivalent to ( ( ), ( ))D Y YM  since a specific ( )D y  is associated with 

only two values of y  (one less and one greater than one), and ( )yM  identifies 

whether y  is greater than or less than one.  Hence ( )D y  and ( )yM , together, 

uniquely define y , and vice versa.  Thus ( )D Y  is a Fisherian ancillary statistic on the 

binary parameter space. 

 

How good is the DDF statistic? 

 

Comparisons of alternative ancillary statistics and attempts to find a non ad hoc 

method for choosing between them are major themes in conditional inference.  

 

In our context – that of conditioning on statistics that are ancillary with respect to 

binary parameter spaces – the same issues arise.  We have just defined a widely 

applicable algorithm for finding an ancillary statistic based on the distribution 

                                                 
3 Fisher (1956), Basu (1964). 
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functions of the likelihood ratio.  How good are such statistics; do they have any 

optimal properties? 

 

From the proof of the theorem, we can see that such statistics are exactly ancillary on 

the BPS, i.e. they have exactly the same distribution under the two hypotheses.  Also 

they are ancillary in the restricted sense favoured by Cox and Fisher, since they are all 

functions of the likelihood ratio statistic, Y , which is the MSS, for any BPS.  (And 

they satisfy all of Fisher’s requirements4, which are more stringent than what we have 

termed ‘restricted ancillarity’.)  In addition, they are exhaustive, meaning that they 

partition the sample space of Y  into the smallest5 subsets that can still be ancillary. 

  

Ancillary statistics that are ‘maximal’6 are generally regarded as superior to those that 

are not, where:    

 

 
An ancillary statistic, ,  is  if the existence of an
ancillary statistic, ,  such that  implies that .

A maximal
B A= g(B) B = h(A)

 

 

This is simply to say that, if there is another ancillary statistic, and A  is a function of 

it, A  must be a one-to-one function of it so that they are equivalent.  This is important 

because any non-one-to-one function of an ancillary statistic is less informative, since 

it does not partition the sample space of Y  so finely.  If A  is not a one-to-one 

function of B , it implies that B  is superior to A  because it separates, into different 

categories (subsets), all the values of y  that are separated by A  and more besides.  

(Note that, in the conventional context, there may be more than one maximal ancillary 

statistic.) 

 

It is clear, however, that if an ancillary statistic is exhaustive, it must also be maximal.  

If A  is an exhaustive ancillary statistic (EAS) and A  is a non-one-to-one function of 

B , then certain values of b  must be associated only with single values of y , other 

than one.  This being so, B  cannot be ancillary.  Being exhaustive entails being 

maximal but not vice versa. 
                                                 
4 But Fisher would have wanted these applied to a natural PS, not a BPS. 
5 ‘Smallest’ in the sense of ‘containing the smallest number of elements’. 
6 Cox (1971). 
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9.3 The DDF statistics for some log-symmetric testing 

scenarios. 

 

In §9.2, we noted that the Normal location test satisfies the conditions for the 

existence of an ancillary DDF statistic.  We already know that | ln |Y  is an EAS in this 

case; how does it compare with the DDF statistic? 

 

In the Normal case, the formula for the DDF statistic is as follows. 

 

 ln ln( )
2 2

y yD y δ δ
δ δ

⎛ ⎞ ⎛ ⎞= Φ + − Φ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

where 1 2| |µ µ
σδ −= , and Φ  is the distribution function of the standard Normal variable, 

Z .  Thus ln( ) ( )
2 y

yD y P Z P Z Iδ
δ

⎛ ⎞⎛ ⎞= ∈ ± = ∈⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
.  The width of yI  isδ , which is 

fixed.  Thus, the closer to zero the centre of the interval is, the larger ( )D y  is.  The 

centre of the interval is ln y
δ , and hence ( )D y  increases (monotonically) as | ln |y  

decreases.  Thus ( )D Y  is a one-to-one function of | ln |Y ; the two exhaustive 

ancillary statistics we have identified are equivalent – conditioning on them produces 

the same result. 

  

The DDF statistic is also ancillary in the Cauchy location case.  In this case it can also 

be shown (more laboriously) that 1 2( ) ( )D y D y=  if and only if 1
2 1y y−=  and hence 

( )D Y  is a one-to-one function of | ln |Y  and equivalent to it. 

 

9.4 Conditioning on the DDF statistic: definitions and results. 

The conditional distribution of the LR given the DDF statistic. 

 

For all values of (1)a D< , there are only two values of y  that satisfy ( )D y a=  (see 

Figure 9.1).  Thus the conditional distribution of | ( )Y D Y a=  is dichotomous (as was 
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the conditional distribution of given | ln |Y Y a= ) and we need to find the 

probabilities associated with the two values.  We define the conditional probability in 

the limit, as before; let ( )D y a= , then 

 

 
0

0

( | ( ) ) lim ( ( , ] | ( ) ( ( ), ( )])

( ( , ])                    lim .
( ( ) ( ( ), ( )])

P Y y D Y a P Y y y D Y D y D y

P Y y y
P D Y D y D y

ε

ε

ε ε

ε
ε

→

→

= = = ∈ − ∈ −

⎧ ⎫∈ −
= ⎨ ⎬∈ −⎩ ⎭

 

 

Recall that ( )D y  is an increasing function for (0,1)y ∈  and a decreasing function for 

(1, )y ∈ ∞ .  We use the following notation: if 1 2( ) ( )D y D y a= =  1 2( 1 )y y< < , then 

1
1 1 ( )y D a−=  and 1

2 2 ( )y D a−= .  That is, 1 2{ , }y y  is the set in the partition of the 

support of Y  that corresponds to the observation ( )D Y a=  and 1y  is the smaller of 

the two values, and 2y  the larger; either 1y  or 2y  was the observed value of y . 

 

 

Let 1 1y < , we want to find 1( | ( ) )P Y y D Y a= = , where 1( )D y a= .  (The observed 

value of y  was either 1
1 1 ( )y D a−=  or 1

2 2 ( )y D a−= , and hence the observed value of 

( )D y  was 1( )a D y= .) 

 

 

1( | ( ) )P Y y D Y a= =  is equal to: 

 

1 1 1 10

1 1

0
1 1

1 1
1 1 1 10

1 1 1 1 2 1 2 1

lim [{ } | { ( ) ( ) ( )}]

({ })lim
({ ( ) ( ) ( )})

({ })lim
({ ( ( )) ( ( ))}) ({ ( ( )) ( ( ))})

P y Y y D y D Y D y

P y Y y
P D y D Y D y

P y Y y
P D D y Y D D y P D D y Y D D y

ε

ε

ε

ε ε

ε
ε

ε
ε ε

→

→

− − − −→

− < < − < <

⎧ ⎫− < <
= ⎨ ⎬− < <⎩ ⎭

⎧ ⎫− < <
= ⎨ ⎬− < < + < < −⎩ ⎭
 

 

 

 



 Chapter 9: Exhaustive ancillary statistics for more general cases. 

 263

Dividing the numerator and denominator by 0ε >  gives: 

 

 

1 1
1 1 1 10

1 1 1 1 2 1 2 1

1 1
1 10

1 1 2 1 2 1

10

({ }) /lim
( ( ( )) ( ( ))}) / ({ ( ( )) ( ( ))}) /

{ ( ) ( )}/lim
[{ ( ) ( )}/ ] [{ ( ( ( ))) ( ( ( )))}/ ]

lim[{ ( ) (

P y Y y
P D D y Y D D y P D D y Y D D y

F y F y
F y F y F D D y F D D y

F y F

ε

ε

ε

ε ε
ε ε ε ε

ε ε
ε ε ε ε

− − − −→

− −→

→

⎧ ⎫− < <
⎨ ⎬− < < + < < −⎩ ⎭

⎧ ⎫− −
= ⎨ ⎬− − + − −⎩ ⎭

−
=

1

1 1
1 1 2 1 2 10 0

1
1 1

1 2 1 2 10

1

1 1 10

1

1 1

)}/ ]

lim[{ ( ) ( )}/ ] lim[{ ( ( ( ))) ( ( ( )))}/ ]

( )
( ) lim[{ ( ( ( ))) ( ( ( )))}/ ]

( )
( ) lim[{ ( ) ( )}/ ]

( ) ,
( ) '( )

y

F y F y F D D y F D D y

f y
f y F D D y F D D y

f y
f y G y G y

f y
f y G y

ε ε

ε

ε

ε ε

ε ε ε ε

ε ε

ε ε

− −

→ →

− −

→

→

−

− − + − −

=
+ − −

=
+ − −

=
−

 

 

where F  is the distribution function of Y , the density function, f , is its derivative, 

and 1
2G F D D−≡ . 

 

Using the fact that 1
2 1 2( ( ))D D y y− = , and '( ) ( ) ( )K HD y f y f y= − , we find that: 

 

 2 1 1
1

2 2

( )[ ( ) ( )]'( )
[ ( ) ( )]

K H

K H

f y f y f yG y
f y f y

−
=

−
. 

 

Hence, 

 1 2 2
1

1 2 2 2 1 1

( )[ ( ) ( )][  | ( ) ]
( )[ ( ) ( )] ( )[ ( ) ( )]

K H

K H K H

f y f y f yP Y y D Y a
f y f y f y f y f y f y

−
= = =

− − −
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and 

 

1 2 2
1

1 2 2 2 1 1

1

2 2 1 1 1

1 1 2 2 2

1

2 1

1 2

1 2

2 1

( )[ ( ) ( )][  | ( ) ]
( )[ ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ( )]1
( )[ ( ) ( )]

[1 ]1
[1 ]

( 1) .
( )

H K H
H

H K H H K H

K K K

K K K

f y f y f yP Y y D Y a
f y f y f y f y f y f y

y f y f y y f y
y f y f y y f y

y y
y y

y y
y y

−

−

−
= = =

− − −

⎡ ⎤−
= −⎢ ⎥−⎣ ⎦

⎡ ⎤−
= −⎢ ⎥−⎣ ⎦

−
=

−

 

 

Similarly, 

 2
1

2 1

( 1)[  | ( ) ] .
( )K

yP Y y D Y a
y y

−
= = =

−
 

 

 

Thus the conditional distribution of   ( )Y given D Y a=  is: 

Table 9.1 

y  1
1 1 ( ) 1y D a−= < 1

2 2 ( ) 1y D a−= >

1[ | ( ) ( )]HP Y y D Y D y= =  1 2

2 1

( 1)
( )
y y

y y
−

−
 2 1

2 1

(1 )
( )
y y

y y
−
−

 

1[ | ( ) ( )]KP Y y D Y D y= =  2

2 1

( 1)
( )

y
y y

−
−

 1

2 1

(1 )
( )

y
y y

−
−

 

 

 

In the log-symmetric case, ( )D y  is equivalent to | ln |y  and 1
2 1y y −= .  Substituting 

this into the above expressions gives the conditional formulae from Chapter 8, 
1

11 1 (1 )( | | ln |) y
H yP Y y A y += = = , etc. 
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9.5 The pairing function. 

 

In the above notation, 1y  and 2y  are related by the equation 1 2( ) ( )D y D y=  and are 

the only values of y  where D  takes a particular value.  We now define a function 

that describes their relationship directly. 

 

Let ( )A Y= Ψ  be any exhaustive ancillary statistic (EAS); we define the pairing 

function of A , ( ) :A yπ + +→ , as the unique function with the property: 

 ( ) ( ( )),  .Ay y yπΨ = Ψ ∀  

 

Thus the two values, y  and ( )A yπ , are associated with the same value of a , or, 

equivalently, the partition on the support of Y  created by A , produces subsets, all of 

the form { , ( )}Ay yπ . 

 

The pairing function of any exhaustive ancillary statistic has the following properties: 

 

i. π  is a one-to-one function. 

ii. π  is its own inverse, i.e. 1π π −≡ . 

iii. (1) 1π = . 

iv. If 1A  and 2A  are equivalent7 EA statistics, then 
1 2A Aπ π≡ . 

 

Thus the equivalence of two (or more) EAS is indicated by their common pairing 

function. 

 

From the general structure of the function ( )D ⋅ , it follows that the pairing function of 

any DDF statistic is monotone decreasing, in addition to having the above properties. 

 

The conditional probabilities associated with any DDF statistic can be written in terms 

of the pairing function, as follows. 

 

                                                 
7 That is, they are one-to-one functions of each other. 
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( ( ) 1)[ | ( ) ( )] ,
( ( ) )
( ( ) 1)[ | ( ) ( )] .
( ( ) )

D
H

D

D
K

D

y yP Y y D Y D y
y y
yP Y y D Y D y
y y

π
π
π
π

−
= = =

−
−

= = =
−

 

 

Only rarely can we solve the equation ( ) ( ( ))D y D yπ=  analytically, to find the 

general form of ( )π ⋅ .  For any explicit D , we can always find the relevant conditional 

values (cp-value etc.) by numerically solving the equation 0 0( ) ( ( ))D y D yπ=  (for 

0( )yπ ), where 0y  is the particular value obtained from the experiment.  This allows 

us to find the conditional results in any particular case, but our ability to talk in 

general about (for example) the relationship between the conditional and 

unconditional p-values is limited.  There is one important exception to this, a property 

common to all conditional tests derived from a DDF statistic, and this will be 

discussed in §9.7.  (For log-symmetric scenarios, 1( )y yπ −=  is known, for all y , 

allowing us to discuss the general nature of the conditional test results, as in the 

previous chapter.) 

 

One result that can be shown to apply8, in general, for the pairing function of any 

DDF statistic, is: 

 
1

lim{ ( )} '(1) 1d
dyy

yπ π
→

= = − . 

This result is useful because it helps to prove a general result about the cp-value, 

namely, 

 

 
1

lim ( ) 50%
y

cp y
→

=  

(where 1y →  from below). 

 

Note that the pairing function for testing H against K, and the pairing function 

(denoted *π ) for testing K (as null) against H, are related by: 11*( ) { ( )}yyπ π −= .  

When the test is log-symmetric, 1( )y yπ −=  and the two functions are the same; thus 

the reverse test is also log-symmetric. 
                                                 
8 Using the facts that '( ) 0, y yπ < ∀  and ( ) ( ( ))D y D yπ− is constant and the formula for ( )D y . 



 Chapter 9: Exhaustive ancillary statistics for more general cases. 

 267

 

9.6 The most relevant error probabilities. 

 

We can use the conditional distribution of Y  to find the error probabilities of any test 

criterion, conditional on the observed value of the DDF statistic.  Since the DDF 

statistic is always exhaustive, these have a good claim to being the most relevant error 

probabilities of that test.  

 

If a test is not to have unnecessarily low power, it must have a critical region of the 

form given by the Neyman-Pearson theorem, i.e. ( ) (0, ]cy LR x y= ∈ .  When 

( )D y a= , any such test has conditional significance level and power as follows. 

 

Suppose we observe data with a likelihood ratio, 0y , such that 0( )D y a= , then 

(letting 1
1 1 ( ) 1y D a−= <  and 1

1 2( ) ( ) 1y D aπ −= > ), the relevant, conditional significance 

level ( )aα , power ( )aκ  and probability of Type II error ( )aβ , of any test of the form 

Reject H when cy y≤ , depend on the value of cy  and are as shown below. 

  

Table 9.2 

 aα  aκ  aβ  

When 1
1 ( )cy D a−< . 0 0 1 

When 1 1
1 2( ) ( )cD a y D a− −≤ < . 1 1

1 1

( ( ) 1)
( ( ) )
y y

y y
π

π
−

−
1

1 1

( ( ) 1)
( ( ) )

y
y y

π
π

−
−

1

1 1

(1 )
( ( ) )

y
y yπ
−

−
 

When 1
2 ( )cy D a−≥ . 1 1 0 

 

Note that if the critical likelihood ratio, cy , is greater than one, then :  1aa α∃ = , 

1aκ =  and 0aβ = , that is, for some data in the rejection region, the most relevant 

significance level of the test is 100%. 
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9.7 A general requirement for sensible inferences. 

 

The conditional distributions of Y , given the DDF statistic, are shown again below 

(where 2 1( )y yπ= ). 

 
y  

1y  2y  

1[ | ( ) ( )]HP Y y D Y D y= =  1 2

2 1

( 1)
( )
y y

y y
−

−
2 1

2 1

(1 )
( )
y y

y y
−
−

1[ | ( ) ( )]KP Y y D Y D y= =  2

2 1

( 1)
( )

y
y y

−
−

 1

2 1

(1 )
( )

y
y y

−
−

 

( 1 21y y< < .) 

 

 

Because the conditional distribution always has this form, it follows that 

2 2,  ( ) 100%y cp y∀ = .  Thus, in general, (as in the log-symmetric case): 

 

 ( ) 100% whenever 1.cp y y= >  

 

When we use an exhaustive conditional test based on the DDF ancillary statistic, no 

data with a likelihood ratio of more than one can ever be significant for rejecting H in 

favour of K.  As we noted earlier, this contrasts hugely with conventional methods 

where, for a high power test, H may be rejected even though 1410y =  and, in fact, 

there is no limit to how large the LR can be while still having a small p-value.  

However, any rejection region, based on a critical likelihood ratio greater than one, 

will inevitably have a conditional significance level of 100%, for some value of 

( )a D y= .  To see this in practice, consider the following example.  (The exponential 

model is not log-symmetric for any hypotheses.) 
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Example 9.1 

 

Suppose ~ ( )X Expo θ and we want to test H: 1θ =  against K: 30θ = .  The 

distributions associated with these hypotheses are very different so it should be a 

simple matter to identify data that constitutes strong evidence against H relative to K 

(the likelihood ratio can be arbitrarily close to zero), however the conventional critical 

region contains many values that do not constitute such evidence. 

 

Figure 9.2 

0 50 100

0.0

0.1

0.2

x

Exponential model: Densities of X
under H(theta=1) and K(theta=30).

H

K

 
The standard 5% test rejects H whenever ln 20 3x ≥ ≈ , that is, when 

( ) 1.66y LR x= ≤ .  Since the critical likelihood ratio is greater than one, it must be the 

case that the conditional significance level of this test is 100% for some values of 

( )a D y= .  We can show this quite simply without going so far as to condition on the 

exact value of a .   

 

Consider the event {3.00 4.16}E X≡ < < ; this event has the same probability under 

H and K, as can be seen from the plot below.  Thus, when E occurs, we should 

condition on this fact in order to derive the more relevant error probabilities.  (The 

cases ‘E occurs’ and ‘E does not occur’ are analogous to ‘machine A is used’ and 

‘machine B is used’.)   
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Figure 9.3 
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E

hypotheses about the exponential mean.
Ancillary event (E) for a test of two

REGION
REJECTION

 
The event, E, lies entirely within the rejection region, [3, )∞ , and, thus, the probability 

that we will reject H, given E, is 100% (under either hypothesis).  The relevant 

significance level of the test is 100%, as is the relevant power; thus we can read 

nothing into the fact that we have rejected H.  

 

Since the cp-value of any data with a likelihood ratio greater than one is always9 

100%, we can evaluate the significance of such data without going to the trouble of 

deriving ( )D y , ( )yπ  or any ancillary events.  Thus, in Example 9.1, the observation 

3.2x =  lies in the rejection region (p-value<5%).  We could use the fact that ancillary 

event E has occurred to show that we can read nothing into this, but there is no need; 

simply by calculating the likelihood ratio of the data: 

 29 3.2
30(3.2) 30exp{ } 1.36 1y LR − ×= = = > , 

we can show that the cp-value is 100% and deduce that the observation does not 

constitute strong evidence against H.  

 

In all cases where the DDF statistic is ancillary, it follows that: 

 

 

No data justifies the rejection of H in favour of K if it has a 
likelihood ratio of more than .  
This is true even when the data lies in the optimal rejection region
defined by a conventionally smal

one

l value of . α

 

                                                 
9 Assuming only that the DDF statistic is ancillary for which the continuity of Y  is a sufficient 
condition. 
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To prove this claim, we generalise the argument used in Example 9.1.   

 

Let ℜ  be a (Neyman-Pearson) best critical region in the support of a random 

variable, X , for rejecting H in favour of K and let 0x  be the observed value of this 

variable; suppose that 0x  lies in the rejection region and has a likelihood ratio of more 

than one.  That is: 

 

a) { : ( ) }x y LR x kℜ ≡ = ≤ . 

b) 0x ∈ℜ . 

c) 0 0( ) 1y LR x= > . 

 

From the above, it follows that 1k >  (this is not inconsistent with ( )HP Xα = ∈ℜ  

being small).  Since 1k > , we can write it as 1
2 ( ( ))k D D k−= , where ( )D Y  is the DDF 

statistic. From the earlier theory on ( )D y , it follows that there exists a value, 
1

1' ( ( )) 1k D D k−= < , (see below). 

 

Figure 9.4 

0 1

0

k' k

D(k)=D(k')

y

statistic as a function of the likelihood ratio, y.
Plot showing the general features of the DDF

D(y)

  
Consider the event { ' }E k Y k≡ ≤ ≤ .  E  is an ancillary event10 since 'k Y k≤ ≤  is 

equivalent to ( ) ( )D Y D k≥  (see plot above) and this depends only on the ancillary 

statistic, ( )D Y . 

                                                 
10 An event having the same probability under each hypothesis. 
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Note the following two results: 

i. The event, E , has occurred if 0X x= , 

ii.  occurs { }E X⇒ ∈ℜ . 

 

The first claim is true because 0( ) ( 1)X x Y= ⇒ >  and, since 0x ∈ℜ , 

0( ) ( )X x Y k= ⇒ ≤ , thus 0( ) (1 ) ( ' )X x Y k k Y k= ⇒ < ≤ ⇒ ≤ ≤ .  The second claim is 

true because X ∈ℜ  if and only if Y k≤  and this is implied by 'k Y k≤ ≤ . 

 

When we observe data, 0x , the event E has occurred and, since it is ancillary, we 

should calculate the error probabilities conditional upon E.  Since 

( | ) 100%P X E∈ℜ =  under both hypotheses, the conditional significance level and 

conditional power are 100%.  When E occurs, we always reject H, no matter which 

hypothesis is true, thus we can read nothing into our result.  The relevant error 

probabilities show that we cannot sensibly reject H on the basis of observing 0x .   

 

The fact that we cannot reject H unless (as a minimum requirement) the likelihood 

ratio of the data is less than one brings us closer to the law of likelihood because it is 

consistent with the view that only a likelihood ratio less than one represents any 

evidence in favour of K (relative to H).  In this, our results differ markedly, not only 

from those of unconditional tests, but also from those derived from the type of 

conditional tests represented by Cox’s example.  Conditioning on the non-exhaustive 

ancillary statistic in Cox’s example can produce a small conditional p-value from data 

with a likelihood ratio of any size, leading to the rejection of H.  

 

 

An aside on the definition of p-value. 

 

Conditional upon the observed value of the DDF statistic, Y  has a discrete 

distribution.  Throughout this work, we use the Fisherian definition of p-value.  

Suppose that X  is any random variable and that Y  is a one-to-one function of X , 

then the Fisherian p-value of 0x  for a left-sided test is 0( )HP X x≤  and for a right-
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sided test is 0( )HP X x≥ .  An alternative definition that is sometimes used in discrete 

cases (where, for instance, X  takes integer values) gives the left-sided p-value as 
1

0 02( 1) ( )H HP X x P X x≤ − + = .  The advantage of this version is that the left-sided and 

right-sided p-values of 0x  (i.e. 1
0 02( 1) ( )H HP X x P X x≤ − + =  and 

1
0 02 ( ) ( 1)H HP X x P X x= + ≥ + ) sum to one instead of summing to 01 ( )HP X x+ = .  

This is seen as a desirable feature for two-sided p-value functions11 and is a feature of 

the Fisherian p-value when X  is continuous.  We retain the Fisherian definition for 

two main reasons. The first is that, in the context of binary parameter spaces, all tests 

are one-sided (in terms of Y ) and further, we have argued (see Chapter 3) that two-

sided tests are nonsensical.  The second is that we wish to retain the usual relationship 

between a significance level, α , and the p-value of x ; namely that the two statements 

‘ x  is in the α -level rejection region’ and ‘ p-value ( )x α≤ ’ are equivalent12.  Note 

however that using the modified definition would not alter the results of our 

conditional inference in any practical way.  All values of 1y <  would still have the 

same cp-value, while values of 1y >  would have varying cp-values, all greater than 

50%, rather than the cp-value of 100% that we have derived.  Since no p-value of 

more than 50% will be regarded as significant, the interpretation of the data would not 

be changed. 

 

 

Swapping hypotheses. 

 

Exhaustive conditional inference, based on the DDF statistic, produces consistent 

results for swapped hypotheses.  The conditional error probabilities, α  and β , for 

testing H versus K are equal to the conditional error probabilities, respectively, *β  

and *α , for testing K versus H. 

 

E. C. inference has a feature that we have already noticed in conditional tests that use 

| ln |Y  as the ancillary statistic.  A minimum requirement for rejecting H in favour of 

                                                 
11 I.e. the two-sided p-value of the fixed value 0x , as a function of θ . 
12 For the discrete case we must assume that ' : p-value( ') .x x α∃ =  
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K is that the likelihood ratio13 is less than one and a minimum requirement for 

rejecting K in favour of H must be that the (same) likelihood ratio is greater than one.  

Thus we can never find the situation that often arises in conventional inference, where 

the same data would lead us to reject H in favour of K and also to reject K in favour 

of H, were the hypotheses reversed.  Conditioning on the DDF statistic, and using any 

bound ( 0 1α< < ) on the conditional significance level of both tests, partitions the 

support of Y  into three intervals.  The first contains ‘small’ values of y  that cause us 

to reject H as the null hypothesis in favour of K, the third contains ‘large’ values of y  

that cause us to reject K as null hypothesis in favour of H, and the second contains 

‘medium sized’ values that do not lead us to reject either hypothesis in favour of the 

other.  In fact, if we let the observed value of ,

,

( )
( )

X H

X K

f x
f xy =  be 0y  and 0 0( )D y a= , then, 

it can easily be shown that the second interval is: 

 

 
1 1

2 0 1 0
1

2 0

( ) [1 (1 ) ( )],
[ ( ) (1 )]

D a D a
D a

α α
α α

− −

−

⎛ ⎞− −
⎜ ⎟− −⎝ ⎠

, 

 

and that this interval contains the value one. 

 

9.8 Wald’s sequential probability-ratio stopping rule and 

exhaustive conditional inference. 

 

In testing two simple hypotheses, any method consistent with the LP will make the 

same inference from given data arising from experiments with different stopping 

rules, as long as the stopping rules produce the same likelihood ratio function (as they 

often do).  This is counter to what happens in conventional frequentist inference 

where the interpretation of any given data is very sensitive to the stopping rule that 

produced it.  Thus 14 heads out of 20 coin tosses will be interpreted differently 

depending on whether the experiment was designed to terminate after 20 tosses or 

terminate after 14 heads.  Because E. C. inference is not consistent with the LP, it will 

also be sensitive to the stopping rule but it is not as sensitive as conventional 

                                                 
13 Defined as /H Kf f . 
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inference.  We have already discussed the case of symmetric stopping rules for 

Bernoulli trials on certain binary parameter spaces (see §8.10).  This showed that E. 

C. inference could produce a common interpretation of data from experiments based 

on different stopping rules in cases where the unconditional inferences would have 

been different.  (In §9.9 we will see that the converse cannot happen.) 

 

In this section we show that, if we use any sampling regime and it gives rise to data 

with a likelihood ratio reasonably far from one, then the same data produced by a 

particular version of Wald’s sequential probability ratio (SPR) sampling regime is 

associated with almost identical E. C. inference results.  This is striking because data 

is usually interpreted quite differently if it comes from a ‘fixed sample size’ regime 

(for example), rather than from an SPR regime. 

 

Wald’s sequential probability-ratio test uses a specific stopping rule designed to 

create a sample space containing only observations that clearly favour one hypothesis 

over the other (the kind of data we might call ‘strong’). The following exposition is 

from Kendall and Stuart14 re-worded to match our terminology and notations. 

 

Suppose we take m  values in succession from a population ( ; )f x θ .  At any stage 

the ratio of the probabilities of the sample on hypotheses H ( 1θ θ= ) and K 

( 2θ θ= ) is 

 
1

1

2
1

( ; )

( ; )

m

i
i

m m

i
i

f x
y

f x

θ

θ

=

=

=
∏

∏
. 

 

We select two numbers  and L U , related to the desired type I and type II error 

probabilities (  and α β ), and set up a sequential test as follows: so long as 

mL y U< <  we continue sampling; at the first occasion when my L≤  we accept 

K; [or] at the first occasion when my U≥  we accept H.  (This experiment 

terminates with a probability of one.) 

 
                                                 
14 Kendall & Stuart, pp. 599-602. 
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The values of and L U  necessary to produce error probabilities of approximately 

 and α β  are 1L α
β−=  and 1U α

β
−= .  The approximation is due to the end-effects (i.e. 

the fact that the final value of my  will overshoot the bound to some degree) but it can 

be shown15 that the approximation is very accurate when and L U  are derived from 

conventionally small values of and α β , i.e. when and L U  are reasonably far away 

from one ( 1L U< < ) and we will assume this to be the case. Then ‘accepting K’ 

amounts to observing a genuinely small likelihood ratio constituting strong evidence 

against H relative to K and ‘accepting H’ amounts to observing a genuinely large 

likelihood ratio, constituting strong evidence against K relative to H.  This sampling 

regime ensures that the sample space contains no values of y  between  and L U  and, 

for practical purposes, no values of y  that are much less than L  or much more that 

U  (since there is not much over-shooting).  Hence the sample space contains only 

values that are clustered close to L  (on the lower side) and close to U  (on the upper 

side).  Assuming that  and L U  were chosen appropriately, the unconditional type I 

and II error probabilities can be derived to a high degree of accuracy as 
( 1)

( )('Accept K')= L U
H U LPα −

−=  and (1 )
( )('Accept H') L

K U LPβ −
−= = .  Because the 

unconditional sample space for this experiment is already virtually reduced to two 

values of y  –  and L U  – the DDF statistic16 is practically degenerate and 

conditioning on it will not significantly change the error probabilities, thus, α  and β  

(above) can also be regarded as the exhaustive conditional error probabilities for this 

test. 

  

                                                 
15 Kendall & Stuart, p. 601. 
16 We have defined the DDF statistic in terms of the distribution functions and these are conventionally 
continuous from the left; we have also stated that Y  must be continuous (except possibly at 1y = ) in 
order that the DDF statistic be ancillary.  However, it is possible to widen the definition of DDF 
statistic so that we can find an exhaustive ancillary statistic in certain cases where Y  is discrete but 
there is a high level of symmetry in its distributions. The modification takes the following form: 

( ) ( ),               1
*( )

( ) ( ),   1.
K H

K H

F y F y y
D y

P Y y P Y y y
− ≤⎧

= ⎨ < − < >⎩
 Thus the distribution functions are defined to be 

continuous from the right when 1y > .  When Y  is continuous there is no distinction between ( )D y  
and *( )D y  and we have not thought it worthwhile to add this extra complication in order to cover a 
small number of unusual cases.  *( )D y  is equivalent to | ln |Y  in the Welch and Double-
exponential cases, where Y  is discrete or partly so (see Chapters 6 & 8), and also applies to Wald’s 
model if we think of Y  as being effectively discrete on { , }L U . 
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Now suppose that we perform an experiment sampling x -values from the same 

population as above and that we are interested in the same hypotheses about θ  (H and 

K), but we do not use the same sampling regime.  Nevertheless, at the end of the day, 

this experiment produces the same data, and hence the same likelihood ratio, as the 

SPR experiment. We call the observed likelihood ratio 0y , and 0( )yπ  is its pair – the 

other root of the equation 0( ) ( )D y D y= , where ( )D Y  is the DDF statistic for this 

scenario (which includes the sampling regime).  As usual, let 1 0 0min{ , ( )} 1y y yπ= <  

and 2 0 0max{ , ( )} 1y y yπ= > .  Then the rule Reject H in favour of K if 1y y=  

produces a test with a conditional type I error probability of 1 2

2 1

( 1)
( )
y y

y yα −
−=  and a 

conditional type II error probability of 1

2 1

(1 )
( )

y
y yβ −

−=  (see §9.4).   

 

Since the same data was observed in both experiments, it follows that either 0y L≈  or 

0y U≈ ; if, in addition, the SPR stopping rule was defined so that L  and U  are 

connected by the relation ( ) ( )D L D U= , then 1 2,  L y U y≈ ≈  and the conditional 

error probabilities are the same for both sampling regimes.  

 

Since our conditional error probabilities have the same general structure as Wald’s 

SPR error probabilities, it follows that, no matter what sampling regime (stopping 

rule) we use, if the data is reasonably informative, an SPR sampling regime can be 

found that can produce the same data and has the same conditional error probabilities.  

In such a case, exhaustive conditional inference overrides the differences between the 

SPR sampling regime and any other regime to produce the same results. 

 

9.9 Inference Classes. 

 

We end this Chapter by introducing a concept that is useful for comparing 

conventional frequentist inference with exhaustive conditional inference based on the 

ancillary DDF statistic, where ‘inference’ refers to the very specific issue of 

identifying data that constitutes strong evidence against one simple hypothesis relative 

to another.  In conventional inference the p-value of the data is the basis for 
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distinguishing between data that constitutes strong17 evidence against one hypothesis 

relative to the other and data that does not.  In exhaustive conditional inference the cp-

value plays the same role. 

 

Let M , be a model connecting a natural statistic, X , with a parameter of interest, θ , 

via some probability density ( ; )f x θM .  Then we define, a scenario, ( , , )H K≡S M , 

as a combination of the model with two distinct, ordered hypotheses specifying the 

value of θ . 

 

In conventional inference, we reject H in favour of K when the p-value is small, and, 

in exhaustive conditional inference, when the cp-value is small.  For any particular 

scenario, S , both the p-value and the cp-value can be written as functions of the 

likelihood ratio statistic, , ,( ) / ( )H X K Xy f x f x= , which is the MSS of θ ; we have 

called these functions ( )p ⋅  and ( )cp ⋅ .  In general these functions vary between 

scenarios; thus, when AS  and BS  are different scenarios, ( )Ap ⋅  and ( )Bp ⋅  may be 

different functions, as may ( )Acp ⋅  and ( )Bcp ⋅ . 

 

We define an inference-class as any class of scenarios all associated with the same p-

value function, ( )p ⋅ .  In other words, all the scenarios in a particular inference-class 

give rise to the same value of ( )p y , for all y .  An E.C. inference-class does the same 

for exhaustive conditional inference, that is, all the scenarios in a particular E. C. 

inference-class give rise to the same value of ( )cp y , for all y .  Thus two scenarios in 

the same inference-class (or E. C. inference-class) result in the same evidential 

interpretation of any particular likelihood ratio. 

 

According to the likelihood principle (LP), all scenarios regarding the same parameter 

of interest (θ ) should be in the same inference class.  Thus, for any given parameter 

of interest there should be only one, universal inference class.  (Hacking’s law of 

likelihood (LL) can be interpreted as implying that, across all parameters of interest, 

there should be only one single inference class.  This would seem to follow from the 

claim that the likelihood ratio, y , is the (sole) measure of the evidence in x  for H 

                                                 
17 The level of strength is specified externally. 
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relative to K.)  Thus conventional inference, based on the p-value, and E. C. 

inference, based on the cp-value, both contravene the LP.  However, we would argue 

that E. C. inference is, in a sense, closer to likelihood inference because of the 

following fact. 

 

 
Any two scenarios that lie in the same inference-class

also lie in the same E. C. inference class, 
but the converse does not hold.

 

 

Changing from conventional inference to E. C. inference increases the size of some 

inference classes and decreases the size of none.  In this sense E. C. inference brings 

us closer to the ideal of a single inference class.  We prove the above claim as 

follows. 

 

Proof. 

Let AS  and BS  be two scenarios in the same (conventional) inference-class and let AY  

and BY  be the likelihood ratio statistics associated with the two scenarios.  Let the two 

hypotheses associated with the scenarios be 1θ θ=  (H) and 2θ θ=  (K) for scenario 

AS , and 1η η=  (H*) and 2η η=  (K*) for scenario BS .18 

 

AY  and BY  must have the same distributions under (respectively) 1θ θ=  and 1η η= , 

since they have the same ( )p y  for all y  and ( )p y  is the cumulative distribution 

function of the likelihood ratio statistic under the null hypothesis.  Since the 

distribution functions are identical (i.e. 
1 1
( ) ( ),  A BF y F y yθ η= ∀ ), the densities are also 

identical, i.e. 
1 1
( ) ( ),A Bf y f y yθ η= ∀ .   

 

We also know that: 

 1 2

1 2

( ) ( ),   and

( ) ( ),  .

A A

B B

f y y f y y

f y y f y y
θ θ

η η

= ⋅ ∀

= ⋅ ∀
 

 
                                                 
18 In the interest of generality, we do not assume that the two scenarios necessarily involve the same 
parameter, since it seems unnecessary to do so. 
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Hence it follows that 
2 2
( ) ( ) ( )A Bf y f y yθ η= ∀ , and thus 

2 2
( ) ( ) ( )A BF y F y yθ η= ∀ , and 

 

 
2 1

2 1

( ) ( ) ( )

( ) ( )

( ) ( ).

A A
A

B B

B

D y F y F y

F y F y

D y y

θ θ

η η

= −

= −

= ∀

 

 

Hence ( ) ( )A By yπ π=  and ( ) ( ),  ,A Bcp y cp y y= ∀  that is, scenarios A and B are in the 

same E. C. inference-class. 

 

We know from many examples that the converse does not hold.  For example, all 

scenarios associated with the Normal location model are in the same E. C. inference-

class (the log-symmetric class), but only those with the same value of 1 2| |µ µ
σδ −=  are in 

the same conventional inference-class, i.e. 
1 2
( ) ( )p y p yδ δ= , for all y , if and only if 

1 2δ δ= . 

 

Combining classes under E. C. inference. 

 

When do two models, involving a particular parameter, produce the same E. C. 

inference even though the unconditional inferences are different, and why?   

 

In terms of the two-stage experimental structure, ( )D Y  describes the outcome of 

stage-one; this tells us nothing about the question at issue, but sets up the conditions 

under which stage-two of the experiment is performed.   

 

Let 1ς  be the support of the likelihood ratio statistic ( 1Y ) under model 1 and 2ς  be the 

support of the LR statistic ( 2Y ) under model 2.  The E. C. inference is the same for 

both models, if, and only if, 1 2( ) ( )y yπ π=  on the intersection of the two supports19 

(i.e. 1 2y ς ς∈ ∩ ).  This is the case only if, for any 1 2y ς ς∈ ∩ , the conditional 

distribution of 1Y  given 1 1 1( ) ( )D Y D y=  is the same as the conditional distribution of 
                                                 
19 And the two models are in the same E. C. inference class if, in addition, 1 2ς ς≡ . 
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2Y  given 2 2 2( ) ( )D Y D y= , and, hence, the DDF statistics 1D  and 2D  are one-to-one 

functions of each other on this set.   

 

When are the unconditional distributions of 1Y  and 2Y  different, despite this?  The 

unconditional density of jY  at the point y  is the product of the density of the variable 

( )j jD Y  at the point ( )jD y  and the conditional density (at y ) of jY  given that 

( ) ( )j j jD Y D y= , i.e. it is the product of the densities of the stage-one variable and the 

(conditional) stage-two variable.  Since the second (conditional) density is the same in 

both cases, the products can only differ if the distribution of the variables 1D  and 2D  

are not the same at the points 1( )D y  and 2 ( )D y , respectively. 

 

We can simplify the discussion if we replace 2 ( )D y  by an ancillary statistic ( 2 ( )D y ), 

having the feature that 1 2 1 2( ) ( ) D y D y y ς ς= ∀ ∈ ∩ , as follows:  

 1 1 2
2

2 1 2

( ),       
let  ( )

( ) 1,  .
D y y

D y
D y y

ς ς
ς ς

∈ ∩⎧
= ⎨ ′+ ∈ ∩⎩

 

 

This transformation forces 1D  and 2D  to take the same values on their common 

domain while ensuring that 2D  is a one-to-one function of 2D  that can be used to 

produce the same conditional inference20 for all 2y ς∈ .  The unconditional 

distributions of 1Y  and 2Y  at y  (common to both models) are different if and only if 

the ancillary statistics, 1 1( )D Y  and 2 2( )D Y , are differently distributed on their 

common support.  This difference in distributions can amount only to a difference 

between the probabilities (densities) assigned to each value since the values 

themselves are the same.  The stage-one distribution, i.e. the distribution of 1 1( )D Y  (or 

2 2( )D Y ), is uninformative about the question at issue since it is the same under H as 

under K; nevertheless, any difference between the distributions of 1 1( )D Y  and of 

2 2( )D Y  is enough to ensure that the conventional, unconditional inferences are not the 

same.  If we observe 1 1( )D Y a=  (say), the conditions for stage-two of the experiment 
                                                 
20 Since 0 ( ) 1,  D y y≤ < ∀ .  This is true for any DDF statistic. 
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are the same as when we observe 2 2( )D Y a= .  Suppose, now, that in both cases these 

identical conditions give rise to the same data.  The E. C. inferences will be the same, 

but, if 1 1 2 2( ( ) ) ( ( ) )P D Y a P D Y a= ≠ = , then the conventional inferences will differ. 

 

If both models are structured as umbrella experiments and have a sub-experiment21 in 

common, then any given result from the sub-experiment will produce the same E. C. 

inference regardless of which umbrella model was used. However, if the sub-

experiment does not have the same probability (density) under both (umbrella) 

scenarios then, even though we perform that particular sub-experiment, and get the 

same result in both cases, the conventional p-values will not be the same, and the two 

models will be in different conventional inference classes. 

 

Which ancillary statistics are covered by E. C. inference? 

 

Any statistic that is ancillary, in (at least) the weak sense of having the same 

distribution for all θ  in the parameter space, defines notional sub-experiments within 

the main experiment.  Each sub-experiment is associated with a unique value of the 

ancillary statistic and thus has a fixed probability of occurring no matter what the 

value of θ .  Any outcome from the main experiment constitutes, in essence: (i) a 

choice of sub-experiment, and (ii) the outcome from that sub-experiment.  Each sub-

experiment is associated with a particular (sub) sample-space, which is a subset of the 

sample space of the whole (umbrella) experiment, i.e. the ancillary statistic defines a 

partition of the original sample space.  The unrestricted conditionality principle states 

that we should make the same inference from any outcome of a given experiment 

regardless of whether that experiment stands alone or is a sub-experiment with respect 

to an ancillary statistic.   

 

Sometimes one ancillary statistic (say, A ) ‘covers’ another ancillary statistic ( B ) in 

the following sense: conditioning upon A  ensures that any outcome is interpreted the 

same way regardless of whether we locate it within the large sample space or within 

                                                 
21 Where, as usual, the probability (density) of ending up in that sub-experiment is the same under H 
and K so that this fact is uninformative. 
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the appropriate sub-space, with respect to B .  Thus any inference that satisfies the 

conditional principle with respect to A , automatically also satisfies it with respect to 

B .  The most obvious case where this occurs is when A  is a more refined version of 

B , i.e. B  is a non-one-to-one function of A  and, hence, all the sub-spaces defined by 

B  are unions of one or more of the sub-spaces defined by A .  However, these are not 

the only circumstances in which conditioning on one ancillary statistic can cover the 

effect of conditioning on another.  In the Welch example (see Chapter 6), we noted 

that conditioning on | ln |A Y=  covers the effect of conditioning on the range, R , 

even though R  is not a function of A . 

 

The DDF statistic satisfies a strong notion of ancillarity with respect to the binary 

parameter space (i.e. it is a function of the MSS), but its exhaustiveness means that 

conditioning upon it has far-reaching effects.  What other ancillary statistics are 

covered by the DDF statistic?  

 

E. C. inference covers the effect of conditioning on another ancillary statistic22, A , if 

and only if the sub-experiments defined by A  all belong to the same E. C. inference 

class.  The proof of this is as follows.  If all the sub-experiments belong in the same 

E. C. inference class, then they must give rise to exactly the same set of likelihood 

ratio values.  For the sub-experiment defined by A a= , the DDF statistic at the value, 

y , is defined by , ,( ) ( ) ( )a K a H aD y F y F y= − .  For the umbrella experiment covering 

the sub-experiments produced by every value of a , the distribution functions (under 

hypothesis i ) are given by23: 

 

,

( ) ( )

( | ) ( )

( ) ( ) .

i i

i A
a

i a A
a

F y P Y y

P Y y A a f a da

F y f a da

= ≤

= ≤ = ⋅

= ⋅

∫

∫

 

 

Hence, the DDF statistic for the ‘umbrella’ experiment (over a ) is: 

 
                                                 
22 A  must be ancillary on a parameter space containing, or identical to, the BPS used for the E. C. 
inference. 
23 Or ,{ ( ) ( )}i a

a

F y P A a⋅ =∑  if A  is discrete. 
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 , ,

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) .

K H

K a A H a A
a a

a A
a

D y F y F y

F y f a da F y f a da

D y f a da

= −

= ⋅ − ⋅

= ⋅

∫ ∫

∫

 

 

If each sub-experiment belongs to the same inference class, it follows that there exists 

a pairing function, : ( ) ( ( ))  a aD y D y y aπ π= ∀ ∀ .   

Hence  

 

( ( ))

( ( )) ( )

( ) ( )

( ).

a A
a

a A
a

D y

D y f a da

D y f a da

D y

π

π= ⋅

= ⋅

=

∫

∫
 

 

Thus ( )π ⋅  is also the pairing function for the umbrella experiment, which, therefore, 

belongs to the same inference class as all the sub-experiments; it follows that the 

exhaustive inference will interpret any outcome from such a sub-experiment the same 

way, regardless of whether or not it stands alone.  Clearly, this is also a necessary 

condition for covering the effect of statistic A , since we need to ensure that: 

  : ( ) ( ( )) ( ) ( ( ))a aa y D y D y D y D yπ π∀ ∀ = ⇔ = , 

and this requires that  : ( ) ( )aa y y yπ π∀ ∀ = . 

 

When an ancillary statistic, A , defines sub-experiments that do not all belong to the 

same E. C. inference class, conditioning on the DDF for the umbrella experiment will 

not have the effect of ensuring that those sub-experiments are interpreted (as it were) 

in isolation.  On the other hand, the DDF statistic partitions the support of the 

likelihood ratio statistic much more finely than most conventional ancillary statistics, 

and this may be considered more than adequate.  We know that we cannot achieve the 

effect of conditioning on all ‘weakly ancillary’24 statistics and adhere to the 

sufficiency principle while remaining in the frequentist framework. 

 

                                                 
24 The statistic has a distribution independent of θ  but is not a function of the MSS. 
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What does this mean for Cox’s example? 

 

In Cox’s example25, the result ( A ) of a coin toss determined which of two Normal 

populations (same unknown mean, different known variances) was sampled from.  

Although Cox advocated conditioning on the observed value of A  – because this 

provides more relevant results – he also insisted that an ancillary statistic should be a 

function of the MSS.  The statistic A  satisfies this requirement when µ ∈  but not 

when the parameter space does not contain an interval and, hence, not when 

1 2{ , }µ µΘ ≡ .  When a conditional frequentist inference is based on an ancillary 

statistic that is not a function of the MSS, it necessarily breaches the SP.  In Example 

4.2, we looked at an instance of Cox’s scenario in which a hypothesis test was carried 

out by conditioning on A  despite the fact that we were testing two simple hypotheses 

so that the parameter space was binary (i.e. {0,5}). Can we confirm that this approach 

breaches the SP? 

 

For a binary parameter space, the LR is a minimal sufficient statistic and, in this case, 

the outcomes 1( 1, 2.62906)a x= =  and 2( 2, 2.53227)a x= =  both have the same 

likelihood ratio26, i.e. 0.851y = .  They therefore produce the same unconditional p-

value (5%), but their p-values, conditional on the observed value of A , are 

(respectively) 9.4334% and 0.5666%.  When we condition on A , we make different 

inferences based on two outcomes that produce the same value of a sufficient statistic.  

This is in breach of the SP and is undesirable since the usual interpretation of 

sufficiency is that the two outcomes contain exactly the same information about the 

question at issue.  We seem to be left with an unpleasant choice between not 

conditioning on A , not satisfying the SP, or not carrying out a frequentist inference.  

Typically, these are the only options, but in Cox’s case, we can get the effect of 

conditioning on A  (and much more) by conditioning on the DDF statistic and this 

does not breach the sufficiency principle.  Purely because Cox chose to use Normal 

models in his sub-experiments, the effect of his ‘which population’ ancillary statistic 

is covered by the DDF statistic for the umbrella experiment.  Since both sub-

                                                 
25 Cox (1958). 
26 The (common) likelihood ratio of these two outcomes was the CLR for the 5% unconditional test – 
see Example 4.2. 
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experiments are for a Normal location model, they fall within the log-symmetric class 

of inference and so does the umbrella experiment (by the argument above).  Thus the 

DDF statistic for the umbrella experiment produces the pairing function 1( )y yπ −=  

(as does each of the sub-experiments), and the E. C. inference gives 
0.851
1.851( 0.851) 45.975%cp y = = =  as the (common) cp-value of either of the given 

outcomes.  Since we get the same result for both outcomes, the method is not in 

breach of the SP and, since we get the same result from (for instance) 

1( 1, 2.62906)a x= = , observed from the umbrella experiment, as from 2.62906x = , 

observed from ‘experiment 1’ (now regarded as the whole experiment), we are 

satisfying the CP with respect to the ancillary statistic A .   

 

The strength of the DDF statistic, as a basis for conditioning, means that it inevitably 

covers the effects of conditioning on some other statistics.  Conditioning on the DDF 

statistic, instead of A  (or nothing) produces results that are consistent with both the 

SP and CP (with respect to A ) but the result is radically different.  Neither the 

conventional p-value (5%) nor Cox’s conditional values are consistent with the 

likelihood ratio of 0.85 ( 1
2 ), whereas the cp-value of 46%, obtained by conditioning 

on the DDF statistic, is quite consistent with the LR. 

 

Also note that, whenever our data has a likelihood ratio greater than or equal to one, it 

will be interpreted the same way by E. C. inference (a cp-value of 100%) regardless 

of whether or not the experiment from which is comes is embedded in a larger 

experiment; this is true even when the sub-experiments do not all come from the same 

class.  Hence conditioning on the DDF will cover the effect of any other ancillary 

statistic whenever 1y > , without breaking the SP.  

 

When we use E. C. inference, there is much more agreement about the interpretation 

to be placed on a given likelihood ratio (regardless of model differences) than when 

we use conventional inference. 


