Chapter 9: Exhaustive ancillary statistics for more

general cases.

9.1 When a testing scenario is not log-symmetric.

In the “two machines’ scenario, each machine has a given probability of being picked
and this is constant under H and K. This feature is necessary if we are not to lose
information in the process of conditioning upon the choice of machine. If a statistic
possesses this feature, the argument for conditioning upon its observed value is

compelling.!

In Chapter 8 we identified a number of cases where the statistic A=|InY | has the
same distribution under H and K; this statistic is also attractive on the following
grounds. If the likelihood ratio, Y, is a measure of the evidence for H relative to K,
then y =3 indicates the same evidence, for H relative to K, as y =1 does, for K
relative to H. Thus we may say that | In y| measures the weight of evidence

favouring (either) one hypothesis over the other, i.e. it indicates the degree to which

the data distinguishes between the two hypotheses. By conditioning upon |InY | we

can take into account how informative our data is (to the question at issue), rather
than using results that average over subsets of the sample space that were not
observed and are more informative or less informative than our data. However, this

option is only available when |InY | is ancillary, which is not always the case.

In general, if A=|InY |, the density function of A (f,) is related to the density

functionof Y (f,) by

fA(In y)=y- fY (y)‘*'%' fY (%)

! It sometimes seems appropriate to condition on a non-ancillary statistic on the basis that we narrow
the sample space down to observations with (in some sense) the same level of reliability as our own. In
order to make a case for this, it is necessary to argue that the conditioning process accesses more
(extra) information than is lost by the conditioning; this is a much harder case to make.
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To show that |InY | is not always ancillary, we need only consider the exponential
model:

f,(x;0)=1e™’ x>0, >0,

with hypotheses H: & =1 versus K: 8 = 2. The likelihood ratio takes values in the

range y € (0,2). Now consider the event A=|InY |=In3, which is equivalent to

Y €{5,3}. Inthe exponential case, f,(3)=0 since ‘3’ is outside the domain of Y
and hence f,(In3)=%f,(3). This value is not the same under the two hypotheses,
since f, (3) has one-third of the value, under H, that it has under K, by definition of

Y as the likelihood ratio. A is not ancillary and |InY |=1In3 is a result that favours K

over H; we would lose this information if we conditioned on the event.

Can we identify ancillary statistics that can be used as the basis of conditional

inference in those cases where |InY | is not ancillary and therefore cannot be used?

In particular, can we identify statistics that are exhaustive as well as ancillary, i.e. that

partition the support of Y into sets containing only two elements?

In this chapter, we show that, whenever Y is a continuous variable, we can identify

such a statistic.

9.2 The ‘difference of distribution functions statistic’.

Theorem identifying an exhaustive ancillary statistic on a BPS.

Preliminaries.

Consider a parameter of interest, @, defined on a parameter space ® . For a given
value of @, the distribution of the random variable X is completely specified. We

consider competing simple hypotheses of the form H: 6 =, versus K: 8 = 6, where
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6, and 6, are any distinct members of ®, defining the binary parameter space (BPS):

®B :{‘91192}-

Define the likelihood ratio statistic for H versus K as:

Y =28~ LR(X),

T 9(X56,)

where g(x;0) is the density of x given 4.

Define f, and f, as the density functions of Y under H and K respectively. Note

)
y -

that Y is its own likelihood ratio as well as the likelihood ratio of X ,i.e. Y =4

Since Y is the MSS of 8 € ®;, we can base our inference on the value of y, rather

than x, with no loss of information.

Theorem.

Suppose that the likelihood ratio statistic, Y , is a continuous variable® under both H

and K, and (c,d) < (0,0) is the shortest interval containing both the support of Y

under H and the support of Y under K. It follows that c <1<d.

Define F,, and F, as the distribution functions of Y under H and K respectively, i.e.

FD(y):Jy' f_(r)dr. Note that F,(c)=F,(c)=0 and F,(d)=F,(d)=1.

Define the difference of distribution functions statistic (DDF statistic) as:

[D(Y) = R (Y)-F (Y)

Then this statistic is an exhaustive ancillary statistic on ©,.

2 Except that Y may have a positive probability mass, p,at y=1.
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Proof.

From the definition of Y as the likelihood ratio statistic, it is easy to show that D(y)
is a continuous function of y, taking non-negative values on (c,d), with a maximum

turning point at y =1 and no other stationary points. Its maximum value is

D@ = j F (r)dr <1.

Figure 9.1
Plot showing the general features of the DDF
statistic as a function of the likelihood ratio, y.
D(yL)=D(y2)=a | - {--------- 77777777777777 777777777777777777777777
D(y)

yl 1 y2

Hence, for any a € (0,D(1)), the equation D(y) =a has exactly two distinct solutions

iny,say y, and y,, where (WLOG) Y, <1<,.

To show that D(Y) is ancillary, we must show that it has the same distribution under

H and K.

The value of the distribution function of D(Y) at a is P,(D(Y)<a).

a=D(y,)=D(y,), hence D(Y)<a ifand only if either Y <y, or Y >y, (see Figure

9.1 above), thus:
P.(D(Y)<a)=PR.(Y <y)+PR.(Y >Y,)
=F,(y,) +1-F,(Y,)
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It follows that
R (D(Y) <a)-F(D(Y) <a)
:{FH (yl) +1-F, (yZ)}_{FK (Y1) +1-F (Y2)}
={Fc (¥2) = Ry (V)3 —{FRc (1) - Ry ()}
=D(y,)-D(y,)
=a-a
=0, (Va).

That is, for all a in the domain of D(Y), the distribution function of D(Y) at a is the
same under the two hypotheses, hence D(Y) has the same distribution under H and
K. D(Y) is a function of the MSS (i.e. Y ) and is thus ancillary on ®, in the

restricted sense. Since it partitions the sample space of Y into sets containing exactly
two values (except for the set {1}), it is an exhaustive ancillary statistic.
Q.E.D.

Range of application of the methodology given in this chapter.

The theorem developed above is always applicable when the following conditions are

met.

Under both hypotheses, the LR statistic, y = LR(x;8,,6,) = %% is a continuous

fy (x;6,) ?

variable, except that it may have a positive probability mass at the point y =1.

This, in turn, is satisfied by the following condition, in terms of the natural statistic,
X . Let the natural variable, X , be a continuous random variable on the

support, ¢, (6) (possibly dependent on &), and with density f, (x;8). Then, for
i =1,2, there should not be any interval, I c ¢, (6), such that y=LR(x;6,,6,) is

a constant not equal to one, for all xeI.
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The following type of well-known structure satisfies these requirements. Suppose X
has densities that are regular cases of the exponential class of continuous type so that
the following conditions are met.

The natural parameter space, ® = (y, ) is an interval, and

Ve e, f, (x;0) =exp[A(@)B(x)+C(#)+ D(x)], a<x<b,

where

o neither a nor b depends on &,

o A(0) is a non-trivial continuous function of &,

o both B'(x) #0 and D(x) are continuous functions of x.

In this situation, our condition is equivalent to requiring that (for 6,6, € ®) there be

C(6,)-C(6)
A(G)-A(6,) !

no interval 1< (a,b) such that B(x) equals some constant, ¢ = forall xel.

(A version of this condition can be extended to the regular exponential class where 6

is a vector rather than one-dimensional.)

Examples of cases where our method is applicable.

Suppose X ~ N(u,4), and thus a member of the regular continuous exponential class
with: A(u) =%, B(x) =x . Clearly, there is no interval, I c R, such that B(x) =X is
constant for all x €1, hence we can apply the theorem to all £ and g, for this

model.

Let X have an Exponential distribution with a mean of &, i.e. f, (x;60) = 49’1e%.
This density is a member of the regular continuous exponential class with A(9) =—-+

and B(x) =x. Again it is clear that we can apply this theorem to all binary parameter

spaces associated with the model.
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A note on the Fisherian structure of the DDF statistic.

The DDF statistic is ancillary (on ®; ) in the restricted sense but it also satisfies

Fisher’s more stringent notion of ancillarity.

A Fisherian ancillary statistic®, 7, has the same distribution for all @ in the given
parameter space, ®, and also satisfies S = (F, M), where S isthe MSSof /e ®,

and M is the maximum likelihood estimator of 8 ® .

To see that D(Y) is a Fisherian ancillary statistic on ®,, recall that Y is the MSS.
The maximum likelihood estimate of & € ®,, based on y, is whichever of 4, and 6,
has the higher likelihood when Y =y . Thus the MLE of 8 ®, is:

g, ify>1
6,, ify<1.

M(y) :{
The MSS, Y, is equivalent to (D(Y), M(Y)) since a specific D(y) is associated with
only two values of y (one less and one greater than one), and M(y) identifies
whether y is greater than or less than one. Hence D(y) and M(y), together,
uniquely define y, and vice versa. Thus D(Y) is a Fisherian ancillary statistic on the

binary parameter space.

How good is the DDF statistic?

Comparisons of alternative ancillary statistics and attempts to find a non ad hoc

method for choosing between them are major themes in conditional inference.

In our context — that of conditioning on statistics that are ancillary with respect to
binary parameter spaces — the same issues arise. We have just defined a widely

applicable algorithm for finding an ancillary statistic based on the distribution

® Fisher (1956), Basu (1964).
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functions of the likelihood ratio. How good are such statistics; do they have any

optimal properties?

From the proof of the theorem, we can see that such statistics are exactly ancillary on
the BPS, i.e. they have exactly the same distribution under the two hypotheses. Also
they are ancillary in the restricted sense favoured by Cox and Fisher, since they are all
functions of the likelihood ratio statistic, Y , which is the MSS, for any BPS. (And
they satisfy all of Fisher’s requirements”, which are more stringent than what we have
termed ‘restricted ancillarity’.) In addition, they are exhaustive, meaning that they

partition the sample space of Y into the smallest® subsets that can still be ancillary.

Ancillary statistics that are ‘maximal’® are generally regarded as superior to those that

are not, where:

An ancillary statistic, A, is maximal if the existence of an
ancillary statistic, B, such that A= g(B) implies that B = h(A).

This is simply to say that, if there is another ancillary statistic, and A is a function of
it, A must be a one-to-one function of it so that they are equivalent. This is important
because any non-one-to-one function of an ancillary statistic is less informative, since
it does not partition the sample space of Y so finely. If A is not a one-to-one
function of B, it implies that B is superior to A because it separates, into different

categories (subsets), all the values of y that are separated by A and more besides.

(Note that, in the conventional context, there may be more than one maximal ancillary

statistic.)

It is clear, however, that if an ancillary statistic is exhaustive, it must also be maximal.
If A isan exhaustive ancillary statistic (EAS) and A is a non-one-to-one function of

B, then certain values of b must be associated only with single values of y, other

than one. This being so, B cannot be ancillary. Being exhaustive entails being

maximal but not vice versa.

* But Fisher would have wanted these applied to a natural PS, not a BPS.
® *‘Smallest’ in the sense of ‘containing the smallest number of elements’.
® Cox (1971).
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9.3 The DDF statistics for some log-symmetric testing

scenarios.

In §9.2, we noted that the Normal location test satisfies the conditions for the

existence of an ancillary DDF statistic. We already know that |InY | is an EAS in this

case; how does it compare with the DDF statistic?

In the Normal case, the formula for the DDF statistic is as follows.

oIy ) _p(Iny_ 9o
D(y)_‘Q)( 5 +2J d)( 5 Zj‘

where & =%l and @ is the distribution function of the standard Normal variable,

Z . Thus D(y):P(Z e(ln—yiéD:P(Z c1.). The width of I, iss, which is
o 2 Y Y

fixed. Thus, the closer to zero the centre of the interval is, the larger D(y) is. The

centre of the interval is '”TV and hence D(y) increases (monotonically) as |Iny|

decreases. Thus D(Y) is a one-to-one function of |InY |; the two exhaustive

ancillary statistics we have identified are equivalent — conditioning on them produces

the same result.

The DDF statistic is also ancillary in the Cauchy location case. In this case it can also
be shown (more laboriously) that D(y,) = D(y,) if and only if y, = y;* and hence

D(Y) is a one-to-one function of |InY | and equivalent to it.

9.4 Conditioning on the DDF statistic: definitions and results.

The conditional distribution of the LR given the DDF statistic.

For all values of a < D(1), there are only two values of y that satisfy D(y)=a (see

Figure 9.1). Thus the conditional distribution of Y | D(Y) =a is dichotomous (as was
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the conditional distribution of Y given |InY |=a) and we need to find the

probabilities associated with the two values. We define the conditional probability in

the limit, as before; let D(y) =a, then

P(Y =y|D(Y)=a)=limP(Y € (y-&,y]| D(Y) € (D(y &), D(Y)])

:“m{ P(Y e(y—&,y]) }
>0 | P(D(Y) e (D(y—¢),D(Y)])

Recall that D(y) is an increasing function for y € (0,1) and a decreasing function for
y € (1,©). We use the following notation: if D(y,) =D(y,)=a (y, <1<Yy,), then
y, =D;*(a) and y, = D,*(a). Thatis, {y,,y,} is the set in the partition of the
support of Y that corresponds to the observation D(Y)=a and vy, is the smaller of

the two values, and vy, the larger; either y, or y, was the observed value of y .

Let y, <1, we want to find P(Y = y,| D(Y) =a), where D(y,)=a. (The observed
value of y was either y, = D;*(a) or y, =D,"(a), and hence the observed value of

D(y) was a=D(y,) )

P(Y =y, | D(Y) =a) is equal to:

lim P[{y, —& <Y <y,} [{D(y,— ) < D(Y) < D(y,)}]

=Iim{ P{y,—e<Y <y,}) }
=0 | P{D(y, —€) < D(Y) < D(¥,)})

=Iim{ PEy, <Y <y}) }
=0 | PAD*(D(y, —#)) <Y < D (D(y))) + PUD; (D(y,) <Y < D, (D(y, - &)}
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Dividing the numerator and denominator by ¢ >0 gives:

i { Py, —e<Y <yPle }
=0 | P(D;*(D(y, €)<Y < D (D(y,))})/ &+ PUD; (D(¥)) <Y < D;*(D(y, ~&)})/ ¢

{ {F(y)-F(y,-&)} e }
[{F (v,) — F(y; — &)} €]+ [{F (D;*(D(y, - £))) — F (D;(D(y,))} &]

_ limE{F (y,) - F(y, - )}/ ¢]
NP () = F (3, =)} ]+ imiF (D, (D Oy, = 20) = F (B (DN} ]

_ f(y,)
f(y) + lim[{F (D,"(D(y; —£))) - F(D,"(D(y,))} €]

_ f(y)
f () +ImHG(y, - &) - G(y,)} ]

)
f(yl)_G‘(yl),

where F is the distribution function of Y, the density function, f, is its derivative,

and G=FoD,'oD.

Using the fact that D,*(D(y,)) =Y,,and D'(y) = f, (y)- f,,(y), we find that:

' f(yz)[fK(Y1)_ fH (yl)]
G'(y,) = .
0= ) )]

Hence,

S f(yl)[fK(yZ)_ fH (yz)]
PIY =y, | D(Y)=a] =
= OO = A= )= o (1= ()L fe ()= ()]
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and

PLLY =, 1 D(Y) =a] =

fH (yl)[fK (yz)_ fH (yz)]

_ _l— yz[l_ yl]j|_1
yl[l_ yz]

_ yl(yz _1) .
(yz_yl)

Similarly,

PRAACAILAARIAAA) }
Y1 fK (yl)[fK (yz)_ Y, fK (yz)]

fH (yl)[fK (yz) - fH (yz)]_ fH (yz)[fK (yl)_ fH (yl)]

(yz _1)

PY =y, ID(Y)=a]=">2—.

(yz - yl)

Thus the conditional distribution of Y given D(Y) =a is:

Table 9.1
y y,=D*(@)<1 | y,=D,'(a)>1
P.IY =y|D(Y)=D(y,)] | Yaly.—D) AN
(yz - yl) (yz - y1)
P.JY =y|D(Y)=D(y,)] | (¥.=D d-y)
(Y, = Y1) (Y, Y1)

In the log-symmetric case, D(y) is equivalentto [Iny| and y, =y,™. Substituting

this into the above expressions gives the conditional formulae from Chapter 8,

B (Y =y, [ A=liny, ) =25, etc.
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9.5 The pairing function.

In the above notation, y, and y, are related by the equation D(y,) = D(y,) and are
the only values of y where D takes a particular value. We now define a function

that describes their relationship directly.

Let A=W(Y) be any exhaustive ancillary statistic (EAS); we define the pairing

function of A, z,(y):R™ — R", as the unique function with the property:

(W (y) =¥ (7, (y)), VY

Thus the two values, y and z,(y), are associated with the same value of a, or,
equivalently, the partition on the support of Y created by A, produces subsets, all of

the form {y, 7, (y)}.
The pairing function of any exhaustive ancillary statistic has the following properties:

i 7 1S a one-to-one function.
ii. o isitsown inverse,ie. 7=7x".
iii. 7@ =1.

iv. If A and A, are equivalent’ EA statistics, then 7, =7

A= Tn,

Thus the equivalence of two (or more) EAS is indicated by their common pairing

function.

From the general structure of the function D(-), it follows that the pairing function of

any DDF statistic is monotone decreasing, in addition to having the above properties.

The conditional probabilities associated with any DDF statistic can be written in terms

of the pairing function, as follows.

" That is, they are one-to-one functions of each other.

265



R.IY = y[D(Y) = D(y)| = =D,
(7 () -Y)

Y = y|D(Y) = D(y)] = 7o =Y.
(7))

Only rarely can we solve the equation D(y) = D(z(y)) analytically, to find the
general form of z(-). For any explicit D, we can always find the relevant conditional
values (cp-value etc.) by numerically solving the equation D(y,) = D(z(y,)) (for
7(Y,)), where y, is the particular value obtained from the experiment. This allows

us to find the conditional results in any particular case, but our ability to talk in
general about (for example) the relationship between the conditional and
unconditional p-values is limited. There is one important exception to this, a property
common to all conditional tests derived from a DDF statistic, and this will be

discussed in 89.7. (For log-symmetric scenarios, z(y) =y is known, forall vy,

allowing us to discuss the general nature of the conditional test results, as in the

previous chapter.)

One result that can be shown to apply?, in general, for the pairing function of any
DDF statistic, is:

{7 (V)y=7') =-1.
This result is useful because it helps to prove a general result about the cp-value,

namely,

Iirq cp(y) =50%
y—

(where y —1 from below).

Note that the pairing function for testing H against K, and the pairing function

(denoted 7 *) for testing K (as null) against H, are related by: z*(y) ={7r(%)}’1.

When the test is log-symmetric, z(y) =y and the two functions are the same; thus

the reverse test is also log-symmetric.

8 Using the facts that 77 '(y) <0, Vy and D(y)— D(7(y)) is constant and the formula for D(y).
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9.6 The most relevant error probabilities.

We can use the conditional distribution of Y to find the error probabilities of any test
criterion, conditional on the observed value of the DDF statistic. Since the DDF
statistic is always exhaustive, these have a good claim to being the most relevant error

probabilities of that test.

If a test is not to have unnecessarily low power, it must have a critical region of the

form given by the Neyman-Pearson theorem, i.e. y=LR(x) €(0,y.]. When

D(y) =a, any such test has conditional significance level and power as follows.

Suppose we observe data with a likelihood ratio, y,, such that D(y,) =a, then
(letting y, = D;*(a) <1 and z(y,) = D,"(a) >1), the relevant, conditional significance
level (a,), power (x,) and probability of Type Il error (5,), of any test of the form

Reject H when y <y, depend on the value of y_ and are as shown below.

Table 9.2

&, Ka ﬂa

When y, <D;*(a). 0 0 1

When D*(a) <y, <D,'(a). | Yu(z(y)-1) | (=(y)-1 A-y)
(7(¥) = V) (z(y) =) | (z(¥))—Yy)

When y, > D,'(a). 1 1 0

Note that if the critical likelihood ratio, y,, is greater than one, then Ja: «, =1,
x,=1and g, =0, that is, for some data in the rejection region, the most relevant

significance level of the test is 100%.
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9.7 A general requirement for sensible inferences.

The conditional distributions of Y , given the DDF statistic, are shown again below

(where 'y, =z(y,)).

y A 1z

P.IY =y DY) =D(y)] | Y2(¥2=D | ¥,A-¥)
(Y,=Y) | (Yo=Y

PLY =y|D(Y)=D(y)] | (¥.=D d-y)
(yz - yl) (yz - yl)

(v, <1<y,.)

Because the conditional distribution always has this form, it follows that

vY,, cp(y,) =100% . Thus, in general, (as in the log-symmetric case):

|cp(y) =100% whenever y >1,

When we use an exhaustive conditional test based on the DDF ancillary statistic, no
data with a likelihood ratio of more than one can ever be significant for rejecting H in
favour of K. As we noted earlier, this contrasts hugely with conventional methods
where, for a high power test, H may be rejected even though y =10" and, in fact,
there is no limit to how large the LR can be while still having a small p-value.
However, any rejection region, based on a critical likelihood ratio greater than one,
will inevitably have a conditional significance level of 100%, for some value of
a=D(y). To see this in practice, consider the following example. (The exponential

model is not log-symmetric for any hypotheses.)
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Example 9.1

Suppose X ~ Expo(&) and we want to test H: @ =1 against K:=30. The
distributions associated with these hypotheses are very different so it should be a
simple matter to identify data that constitutes strong evidence against H relative to K
(the likelihood ratio can be arbitrarily close to zero), however the conventional critical

region contains many values that do not constitute such evidence.

Figure 9.2

Exponential model: Densities of X
under H(theta=1) and K(theta=30).

0.2 —

0.1 —

The standard 5% test rejects H whenever x >In20 ~ 3, that is, when

y =LR(x) <1.66. Since the critical likelihood ratio is greater than one, it must be the

case that the conditional significance level of this test is 100% for some values of

a=D(y). We can show this quite simply without going so far as to condition on the

exact value of a.

Consider the event E ={3.00 < X < 4.16}; this event has the same probability under
H and K, as can be seen from the plot below. Thus, when E occurs, we should
condition on this fact in order to derive the more relevant error probabilities. (The
cases ‘E occurs’ and ‘E does not occur’ are analogous to ‘machine A is used’ and

‘machine B is used’.)
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Figure 9.3

Ancillary event (E) for a test of two
hypotheses about the exponential mean.

: : REJECTION
>
T T T T T T T T T REGON

The event, E, lies entirely within the rejection region, [3,%), and, thus, the probability
that we will reject H, given E, is 100% (under either hypothesis). The relevant
significance level of the test is 100%, as is the relevant power; thus we can read

nothing into the fact that we have rejected H.

Since the cp-value of any data with a likelihood ratio greater than one is always®
100%, we can evaluate the significance of such data without going to the trouble of
deriving D(y), z(y) or any ancillary events. Thus, in Example 9.1, the observation
x =3.2 lies in the rejection region (p-value<5%). We could use the fact that ancillary
event E has occurred to show that we can read nothing into this, but there is no need;
simply by calculating the likelihood ratio of the data:

y =LR(3.2) =30exp{-234}=1.36>1,
we can show that the cp-value is 100% and deduce that the observation does not

constitute strong evidence against H.

In all cases where the DDF statistic is ancillary, it follows that:

No data justifies the rejection of H in favour of K if it has a
likelihood ratio of more than one.

This is true even when the data lies in the optimal rejection region
defined by a conventionally small value of «.

® Assuming only that the DDF statistic is ancillary for which the continuity of Y is a sufficient
condition.
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To prove this claim, we generalise the argument used in Example 9.1.

Let R be a (Neyman-Pearson) best critical region in the support of a random

variable, X , for rejecting H in favour of K and let x, be the observed value of this
variable; suppose that X, lies in the rejection region and has a likelihood ratio of more

than one. That is:

a) R={x:y=LR(x)<k}.
b) X, eR.
C) Y,=LR(x))>1.

From the above, it follows that k >1 (this is not inconsistent with a =P, (X € R)
being small). Since k >1, we can write it as k = D,*(D(k)), where D(Y) is the DDF
statistic. From the earlier theory on D(y), it follows that there exists a value,

k'=D;*(D(k)) <1, (see below).

Figure 9.4
Plot showing the general features of the DDF
statistic as a function of the likelihood ratio, y.
DK)=D(K) | -{-------- R Kommoomme oo
D(y)

Consider the event E={k'<Y <k}. E isan ancillary event'®since k'<Y <k is
equivalentto D(Y) > D(k) (see plot above) and this depends only on the ancillary
statistic, D(Y).

10 An event having the same probability under each hypothesis.
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Note the following two results:

I.  Theevent, E, has occurred if X =X,,

ii.  E occurs={X eR}.

The first claim is true because (X =x,) = (Y >1) and, since x, € R,
(X =%,)= (Y <k),thus (X =x%;) = (1<Y <k)= (k'<Y <k). The second claim is

true because X e R ifand only if Y <k and this is implied by k'<Y <k.

When we observe data, x,, the event E has occurred and, since it is ancillary, we

should calculate the error probabilities conditional upon E. Since

P(X e R| E)=100% under both hypotheses, the conditional significance level and
conditional power are 100%. When E occurs, we always reject H, no matter which
hypothesis is true, thus we can read nothing into our result. The relevant error

probabilities show that we cannot sensibly reject H on the basis of observing X, .

The fact that we cannot reject H unless (as a minimum requirement) the likelihood
ratio of the data is less than one brings us closer to the law of likelihood because it is
consistent with the view that only a likelihood ratio less than one represents any
evidence in favour of K (relative to H). In this, our results differ markedly, not only
from those of unconditional tests, but also from those derived from the type of
conditional tests represented by Cox’s example. Conditioning on the non-exhaustive
ancillary statistic in Cox’s example can produce a small conditional p-value from data

with a likelihood ratio of any size, leading to the rejection of H.

An aside on the definition of p-value.

Conditional upon the observed value of the DDF statistic, Y has a discrete
distribution. Throughout this work, we use the Fisherian definition of p-value.
Suppose that X is any random variable and that Y is a one-to-one function of X,

then the Fisherian p-value of x, for a left-sided testis P, (X < x,) and for a right-
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sided testis P, (X > x;). An alternative definition that is sometimes used in discrete
cases (where, for instance, X takes integer values) gives the left-sided p-value as

P, (X <x,-1)+3$P, (X =x,). The advantage of this version is that the left-sided and
right-sided p-values of x, (i.e. B, (X <x,-1)+$P,(X =X%,) and

TP, (X =%,)+ P, (X =2 X, +1)) sum to one instead of summing to 1+ P, (X =x,).
This is seen as a desirable feature for two-sided p-value functions™ and is a feature of
the Fisherian p-value when X is continuous. We retain the Fisherian definition for
two main reasons. The first is that, in the context of binary parameter spaces, all tests
are one-sided (in terms of Y ) and further, we have argued (see Chapter 3) that two-
sided tests are nonsensical. The second is that we wish to retain the usual relationship
between a significance level, «, and the p-value of x; namely that the two statements

“x isinthe « -level rejection region’ and * p-value (x) < & * are equivalent'?. Note

however that using the modified definition would not alter the results of our

conditional inference in any practical way. All values of y <1 would still have the
same cp-value, while values of y >1 would have varying cp-values, all greater than

50%, rather than the cp-value of 100% that we have derived. Since no p-value of
more than 50% will be regarded as significant, the interpretation of the data would not

be changed.

Swapping hypotheses.

Exhaustive conditional inference, based on the DDF statistic, produces consistent

results for swapped hypotheses. The conditional error probabilities, « and g, for
testing H versus K are equal to the conditional error probabilities, respectively, g*

and a*, for testing K versus H.

E. C. inference has a feature that we have already noticed in conditional tests that use

|InY | as the ancillary statistic. A minimum requirement for rejecting H in favour of

11 e. the two-sided p-value of the fixed value X, as a function of 0.
' For the discrete case we must assume that 3X " p-value(x") = a.
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K is that the likelihood ratio™® is less than one and a minimum requirement for
rejecting K in favour of H must be that the (same) likelihood ratio is greater than one.
Thus we can never find the situation that often arises in conventional inference, where
the same data would lead us to reject H in favour of K and also to reject K in favour
of H, were the hypotheses reversed. Conditioning on the DDF statistic, and using any
bound (0 < & <1) on the conditional significance level of both tests, partitions the

support of Y into three intervals. The first contains ‘small’ values of y that cause us
to reject H as the null hypothesis in favour of K, the third contains ‘large’ values of y

that cause us to reject K as null hypothesis in favour of H, and the second contains

‘medium sized’ values that do not lead us to reject either hypothesis in favour of the

f

other. In fact, if we let the observed value of y =~ E:i be y, and D(y,) = a,, then,

it can easily be shown that the second interval is:

( aD;'(a,) [1—(1—&)D11(a0)]j
[D;"(a,) - (1-&)]’ a ’

and that this interval contains the value one.

9.8 Wald’s sequential probability-ratio stopping rule and

exhaustive conditional inference.

In testing two simple hypotheses, any method consistent with the LP will make the
same inference from given data arising from experiments with different stopping
rules, as long as the stopping rules produce the same likelihood ratio function (as they
often do). This is counter to what happens in conventional frequentist inference
where the interpretation of any given data is very sensitive to the stopping rule that
produced it. Thus 14 heads out of 20 coin tosses will be interpreted differently
depending on whether the experiment was designed to terminate after 20 tosses or
terminate after 14 heads. Because E. C. inference is not consistent with the LP, it will

also be sensitive to the stopping rule but it is not as sensitive as conventional

" Defined as f,, / f, .
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inference. We have already discussed the case of symmetric stopping rules for
Bernoulli trials on certain binary parameter spaces (see 88.10). This showed that E.
C. inference could produce a common interpretation of data from experiments based
on different stopping rules in cases where the unconditional inferences would have

been different. (In §9.9 we will see that the converse cannot happen.)

In this section we show that, if we use any sampling regime and it gives rise to data
with a likelihood ratio reasonably far from one, then the same data produced by a
particular version of Wald’s sequential probability ratio (SPR) sampling regime is
associated with almost identical E. C. inference results. This is striking because data
is usually interpreted quite differently if it comes from a ‘fixed sample size’ regime

(for example), rather than from an SPR regime.

Wald’s sequential probability-ratio test uses a specific stopping rule designed to
create a sample space containing only observations that clearly favour one hypothesis

over the other (the kind of data we might call ‘strong’). The following exposition is

t14

from Kendall and Stuart™ re-worded to match our terminology and notations.

Suppose we take m values in succession from a population f(x;8). At any stage

the ratio of the probabilities of the sample on hypotheses H (6 =6,) and K
(60=6,)is

T1fx:6)
y _ =l

" It

We select two numbers L and U , related to the desired type | and type Il error

probabilities (« and £), and set up a sequential test as follows: so long as
L <y, <U we continue sampling; at the first occasion when y, <L we accept
K; [or] at the first occasion when y_>U we accept H. (This experiment

terminates with a probability of one.)

4 Kendall & Stuart, pp. 599-602.
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The values of L and U necessary to produce error probabilities of approximately

o and g are L=1% and U =4 . The approximation is due to the end-effects (i.e.

the fact that the final value of y_ will overshoot the bound to some degree) but it can

be shown™ that the approximation is very accurate when L and U are derived from

conventionally small values of « and £, i.e. when L and U are reasonably far away

from one (L <1<U ) and we will assume this to be the case. Then “accepting K’
amounts to observing a genuinely small likelihood ratio constituting strong evidence
against H relative to K and ‘accepting H’ amounts to observing a genuinely large
likelihood ratio, constituting strong evidence against K relative to H. This sampling
regime ensures that the sample space contains no values of y between L and U and,
for practical purposes, no values of y that are much less than L or much more that
U (since there is not much over-shooting). Hence the sample space contains only
values that are clustered close to L (on the lower side) and close to U (on the upper
side). Assuming that L and U were chosen appropriately, the unconditional type |
and Il error probabilities can be derived to a high degree of accuracy as

a =P, (Accept K)=*"2 and g =P, ('Accept H') = &2 Because the

(U-L) U-L) -

unconditional sample space for this experiment is already virtually reduced to two

values of y — L and U — the DDF statistic*® is practically degenerate and
conditioning on it will not significantly change the error probabilities, thus, « and g

(above) can also be regarded as the exhaustive conditional error probabilities for this

test.

15 Kendall & Stuart, p. 601.
18 \We have defined the DDF statistic in terms of the distribution functions and these are conventionally

continuous from the left; we have also stated that Y must be continuous (except possibly at Y =1) in
order that the DDF statistic be ancillary. However, it is possible to widen the definition of DDF

statistic so that we can find an exhaustive ancillary statistic in certain cases where Y is discrete but
there is a high level of symmetry in its distributions. The modification takes the following form:

D*(y) = {FK =F ), y=l Thus the distribution functions are defined to be
P.(Y<y)-P,(Y<y), y>1

continuous from the right when y >1. When Y is continuous there is no distinction between D(Yy)

and D*(y) and we have not thought it worthwhile to add this extra complication in order to cover a

small number of unusual cases. D* () is equivalentto | INY | in the Welch and Double-

exponential cases, where Y is discrete or partly so (see Chapters 6 & 8), and also applies to Wald’s
model if we think of Y as being effectively discrete on {L,U}.
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Now suppose that we perform an experiment sampling x -values from the same
population as above and that we are interested in the same hypotheses about 6 (H and
K), but we do not use the same sampling regime. Nevertheless, at the end of the day,
this experiment produces the same data, and hence the same likelihood ratio, as the

SPR experiment. We call the observed likelihood ratio y,, and z(y,) is its pair — the
other root of the equation D(y) = D(y,), where D(Y) is the DDF statistic for this
scenario (which includes the sampling regime). As usual, let y, = min{y,, z(y,)} <1

and y, = max{y,, z(y,)}>1. Then the rule Reject H in favour of Kif y =y,

H H HH _ nyp-1)
produces a test with a conditional type I error probability of o =~~~ and a

conditional type 11 error probability of 8 =-S%4L (see §9.4).

(Y2-1)

Since the same data was observed in both experiments, it follows that either y, ~ L or
Yy, =U ; if, in addition, the SPR stopping rule was defined so that L and U are
connected by the relation D(L)=D(U), then L~ y,, U =y, and the conditional

error probabilities are the same for both sampling regimes.

Since our conditional error probabilities have the same general structure as Wald’s
SPR error probabilities, it follows that, no matter what sampling regime (stopping
rule) we use, if the data is reasonably informative, an SPR sampling regime can be
found that can produce the same data and has the same conditional error probabilities.
In such a case, exhaustive conditional inference overrides the differences between the

SPR sampling regime and any other regime to produce the same results.

9.9 Inference Classes.

We end this Chapter by introducing a concept that is useful for comparing
conventional frequentist inference with exhaustive conditional inference based on the
ancillary DDF statistic, where ‘inference’ refers to the very specific issue of
identifying data that constitutes strong evidence against one simple hypothesis relative

to another. In conventional inference the p-value of the data is the basis for
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distinguishing between data that constitutes strong"’ evidence against one hypothesis
relative to the other and data that does not. In exhaustive conditional inference the cp-

value plays the same role.

Let M, be a model connecting a natural statistic, X , with a parameter of interest, &,
via some probability density f, (x;6). Then we define, a scenario, S =(M,H, K),
as a combination of the model with two distinct, ordered hypotheses specifying the

value of 6.

In conventional inference, we reject H in favour of K when the p-value is small, and,
in exhaustive conditional inference, when the cp-value is small. For any particular
scenario, S, both the p-value and the cp-value can be written as functions of the

likelihood ratio statistic, y = f, , (x)/ f, , (x), which is the MSS of &; we have
called these functions p(-) and cp(-). In general these functions vary between
scenarios; thus, when S, and S; are different scenarios, p,(-) and pg(-) may be

different functions, as may cp,(-) and cp;(-).

We define an inference-class as any class of scenarios all associated with the same p-

value function, p(:). In other words, all the scenarios in a particular inference-class
give rise to the same value of p(y), forall y. An E.C. inference-class does the same

for exhaustive conditional inference, that is, all the scenarios in a particular E. C.

inference-class give rise to the same value of cp(y), forall y. Thus two scenarios in

the same inference-class (or E. C. inference-class) result in the same evidential

interpretation of any particular likelihood ratio.

According to the likelihood principle (LP), all scenarios regarding the same parameter
of interest (&) should be in the same inference class. Thus, for any given parameter
of interest there should be only one, universal inference class. (Hacking’s law of
likelihood (LL) can be interpreted as implying that, across all parameters of interest,
there should be only one single inference class. This would seem to follow from the

claim that the likelihood ratio, y, is the (sole) measure of the evidence in x for H

7 The level of strength is specified externally.
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relative to K.) Thus conventional inference, based on the p-value, and E. C.
inference, based on the cp-value, both contravene the LP. However, we would argue
that E. C. inference is, in a sense, closer to likelihood inference because of the

following fact.

Any two scenarios that lie in the same inference-class
also lie in the same E. C. inference class,
but the converse does not hold.

Changing from conventional inference to E. C. inference increases the size of some
inference classes and decreases the size of none. In this sense E. C. inference brings
us closer to the ideal of a single inference class. We prove the above claim as

follows.

Proof.

Let S, and S; be two scenarios in the same (conventional) inference-class and let Y,
and Y, be the likelihood ratio statistics associated with the two scenarios. Let the two
hypotheses associated with the scenarios be 8 =6, (H) and 6 =6, (K) for scenario

S,,and n=n, (H*) and =7, (K*) for scenario S; 18

Y, and Y, must have the same distributions under (respectively) 6 =6, and =7,
since they have the same p(y) forall y and p(y) is the cumulative distribution
function of the likelihood ratio statistic under the null hypothesis. Since the

distribution functions are identical (i.e. Fgf(y) = F,f(y), VY ), the densities are also

identical, i.e. f,'(y)="f’(y),Vy.

We also know that:
fo (y)=y-f,(y), ¥y and
fo)=y-f2(y), vy.

18 In the interest of generality, we do not assume that the two scenarios necessarily involve the same
parameter, since it seems unnecessary to do so.
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Hence it follows that f,*(y) = f,*(y) (vy),and thus F,'(y) = F’(y) (Vy), and

D(y) = Fgﬁ(y) - Fgf(y)
=F. (y)-F ()
=Dy (y) (VY).

Hence 7,(y) =75 (y) and cp,(y) =cpg(y), VY, thatis, scenarios A and B are in the

same E. C. inference-class.

We know from many examples that the converse does not hold. For example, all

scenarios associated with the Normal location model are in the same E. C. inference-

class (the log-symmetric class), but only those with the same value of 6 = '”1%‘”2‘ arein
the same conventional inference-class, i.e. p; (y) = p;, (y), forall y, if and only if

5,=5,.

Combining classes under E. C. inference.

When do two models, involving a particular parameter, produce the same E. C.

inference even though the unconditional inferences are different, and why?

In terms of the two-stage experimental structure, D(Y) describes the outcome of

stage-one; this tells us nothing about the question at issue, but sets up the conditions

under which stage-two of the experiment is performed.

Let ¢, be the support of the likelihood ratio statistic (Y;) under model 1 and ¢, be the
support of the LR statistic (Y, ) under model 2. The E. C. inference is the same for
both models, if, and only if, 7,(y) = z,(y) on the intersection of the two supports™
(i.,e. yeg ng,). Thisisthe case only if, forany y e g, ng,, the conditional

distribution of Y, given D,(Y,) = D,(y) is the same as the conditional distribution of

% And the two models are in the same E. C. inference class if, in addition, G =6,.
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Y, given D,(Y,) =D,(Yy), and, hence, the DDF statistics D, and D, are one-to-one

functions of each other on this set.

When are the unconditional distributions of Y, and Y, different, despite this? The
unconditional density of Y; at the point y is the product of the density of the variable
D;(Y;) atthe point D, (y) and the conditional density (at y ) of Y; given that
D,(Y;)=D;(y), i.e. itis the product of the densities of the stage-one variable and the

(conditional) stage-two variable. Since the second (conditional) density is the same in

both cases, the products can only differ if the distribution of the variables D, and D,

are not the same at the points D,(y) and D,(y), respectively.

We can simplify the discussion if we replace D,(y) by an ancillary statistic ( D,(y) ),

having the feature that D,(y) = D,(y) Vy e ¢, N¢,, as follows:

D.(y), VYegng,

let D,(y)=
° D:0) {Dz(y)"‘luyeé'l’ﬁgz-

This transformation forces D, and D, to take the same values on their common
domain while ensuring that D, is a one-to-one function of D, that can be used to
produce the same conditional inference® for all y e ¢, . The unconditional
distributions of Y, and Y, at y (common to both models) are different if and only if

the ancillary statistics, D,(Y,) and D,(Y,), are differently distributed on their

common support. This difference in distributions can amount only to a difference
between the probabilities (densities) assigned to each value since the values

themselves are the same. The stage-one distribution, i.e. the distribution of D,(Y,) (or
D,(Y,)), is uninformative about the question at issue since it is the same under H as
under K; nevertheless, any difference between the distributions of D, (Y,) and of
D,(Y,) is enough to ensure that the conventional, unconditional inferences are not the

same. If we observe D,(Y,) =a (say), the conditions for stage-two of the experiment

2 since 0< D(y) <1, Vy. This is true for any DDF statistic.
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are the same as when we observe D, (Y,) =a. Suppose, now, that in both cases these
identical conditions give rise to the same data. The E. C. inferences will be the same,

but, if P(D,(Y,) =a) = P(D,(Y,) = a), then the conventional inferences will differ.

If both models are structured as umbrella experiments and have a sub-experiment®* in
common, then any given result from the sub-experiment will produce the same E. C.
inference regardless of which umbrella model was used. However, if the sub-
experiment does not have the same probability (density) under both (umbrella)
scenarios then, even though we perform that particular sub-experiment, and get the
same result in both cases, the conventional p-values will not be the same, and the two

models will be in different conventional inference classes.

Which ancillary statistics are covered by E. C. inference?

Any statistic that is ancillary, in (at least) the weak sense of having the same
distribution for all @ in the parameter space, defines notional sub-experiments within
the main experiment. Each sub-experiment is associated with a unique value of the
ancillary statistic and thus has a fixed probability of occurring no matter what the
value of #. Any outcome from the main experiment constitutes, in essence: (i) a
choice of sub-experiment, and (ii) the outcome from that sub-experiment. Each sub-
experiment is associated with a particular (sub) sample-space, which is a subset of the
sample space of the whole (umbrella) experiment, i.e. the ancillary statistic defines a
partition of the original sample space. The unrestricted conditionality principle states
that we should make the same inference from any outcome of a given experiment
regardless of whether that experiment stands alone or is a sub-experiment with respect

to an ancillary statistic.

Sometimes one ancillary statistic (say, A) ‘covers’ another ancillary statistic (B ) in
the following sense: conditioning upon A ensures that any outcome is interpreted the

same way regardless of whether we locate it within the large sample space or within

21 Where, as usual, the probability (density) of ending up in that sub-experiment is the same under H
and K so that this fact is uninformative.
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the appropriate sub-space, with respect to B . Thus any inference that satisfies the
conditional principle with respect to A, automatically also satisfies it with respect to
B . The most obvious case where this occurs is when A is a more refined version of
B, i.e. B is anon-one-to-one function of A and, hence, all the sub-spaces defined by
B are unions of one or more of the sub-spaces defined by A. However, these are not
the only circumstances in which conditioning on one ancillary statistic can cover the
effect of conditioning on another. In the Welch example (see Chapter 6), we noted

that conditioning on A=|InY | covers the effect of conditioning on the range, R,

even though R is not a function of A.

The DDF statistic satisfies a strong notion of ancillarity with respect to the binary
parameter space (i.e. it is a function of the MSS), but its exhaustiveness means that
conditioning upon it has far-reaching effects. What other ancillary statistics are
covered by the DDF statistic?

E. C. inference covers the effect of conditioning on another ancillary statistic”?, A, if
and only if the sub-experiments defined by A all belong to the same E. C. inference
class. The proof of this is as follows. If all the sub-experiments belong in the same
E. C. inference class, then they must give rise to exactly the same set of likelihood
ratio values. For the sub-experiment defined by A=a, the DDF statistic at the value,

y, is defined by D, (y)=F,.(y)-F, .(y). Forthe umbrella experiment covering

the sub-experiments produced by every value of a, the distribution functions (under
hypothesis i) are given by®:
F(y)=R({ <y)
=[P(r<ylA=a)-f,(a)da

= [F.(y)- fu(a)da.

Hence, the DDF statistic for the ‘umbrella’ experiment (over a) is:

22 A must be ancillary on a parameter space containing, or identical to, the BPS used for the E. C.
inference.

Bor Z{Fi,a(y) P(A=a)} if A isdiscrete.
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D(y) = R (y) - Fy (y)
= [Fea(y)- fu(@)da=[F, (y)- f,(a)da

= [D,(y)- fo(a)da.

If each sub-experiment belongs to the same inference class, it follows that there exists
a pairing function, z:D,(y) = D,(z(y)) Vy Va.
Hence

D(z(y))

= [D,(z(y))- f.(a)da

= [D,(y)- f,(a)da

=D(y).

Thus 7(-) is also the pairing function for the umbrella experiment, which, therefore,

belongs to the same inference class as all the sub-experiments; it follows that the
exhaustive inference will interpret any outcome from such a sub-experiment the same
way, regardless of whether or not it stands alone. Clearly, this is also a necessary

condition for covering the effect of statistic A, since we need to ensure that:
va vy:D(y) = D(z(y)) < D,(y) = D, (z(y)),

and this requires that Va vy : 7z, (y) = 7(y).

When an ancillary statistic, A, defines sub-experiments that do not all belong to the
same E. C. inference class, conditioning on the DDF for the umbrella experiment will
not have the effect of ensuring that those sub-experiments are interpreted (as it were)
in isolation. On the other hand, the DDF statistic partitions the support of the
likelihood ratio statistic much more finely than most conventional ancillary statistics,
and this may be considered more than adequate. We know that we cannot achieve the

224

effect of conditioning on all ‘weakly ancillary’<” statistics and adhere to the

sufficiency principle while remaining in the frequentist framework.

% The statistic has a distribution independent of & but is not a function of the MSS.
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What does this mean for Cox’s example?

In Cox’s example®, the result ( A) of a coin toss determined which of two Normal
populations (same unknown mean, different known variances) was sampled from.
Although Cox advocated conditioning on the observed value of A — because this
provides more relevant results — he also insisted that an ancillary statistic should be a

function of the MSS. The statistic A satisfies this requirement when « e R but not
when the parameter space does not contain an interval and, hence, not when

O ={u, 1,}. When a conditional frequentist inference is based on an ancillary

statistic that is not a function of the MSS, it necessarily breaches the SP. In Example
4.2, we looked at an instance of Cox’s scenario in which a hypothesis test was carried
out by conditioning on A despite the fact that we were testing two simple hypotheses

so that the parameter space was binary (i.e. {0,5}). Can we confirm that this approach

breaches the SP?

For a binary parameter space, the LR is a minimal sufficient statistic and, in this case,
the outcomes (a=1,x =2.62906) and (a=2,x, =2.53227) both have the same

likelihood ratio®, i.e. y=0.851. They therefore produce the same unconditional p-

value (5%), but their p-values, conditional on the observed value of A, are
(respectively) 9.4334% and 0.5666%. When we condition on A, we make different
inferences based on two outcomes that produce the same value of a sufficient statistic.
This is in breach of the SP and is undesirable since the usual interpretation of
sufficiency is that the two outcomes contain exactly the same information about the
question at issue. We seem to be left with an unpleasant choice between not
conditioning on A, not satisfying the SP, or not carrying out a frequentist inference.
Typically, these are the only options, but in Cox’s case, we can get the effect of
conditioning on A (and much more) by conditioning on the DDF statistic and this
does not breach the sufficiency principle. Purely because Cox chose to use Normal
models in his sub-experiments, the effect of his ‘which population” ancillary statistic

is covered by the DDF statistic for the umbrella experiment. Since both sub-

%5 Cox (1958).
% The (common) likelihood ratio of these two outcomes was the CLR for the 5% unconditional test —
see Example 4.2.
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experiments are for a Normal location model, they fall within the log-symmetric class

of inference and so does the umbrella experiment (by the argument above). Thus the
DDF statistic for the umbrella experiment produces the pairing function z(y)=y™

(as does each of the sub-experiments), and the E. C. inference gives

cp(y =0.851) = 281 = 45.975% as the (common) cp-value of either of the given

1850 —
outcomes. Since we get the same result for both outcomes, the method is not in
breach of the SP and, since we get the same result from (for instance)

(a=1,x =2.62906), observed from the umbrella experiment, as from x =2.62906 ,

observed from ‘experiment 1’ (now regarded as the whole experiment), we are

satisfying the CP with respect to the ancillary statistic A.

The strength of the DDF statistic, as a basis for conditioning, means that it inevitably
covers the effects of conditioning on some other statistics. Conditioning on the DDF
statistic, instead of A (or nothing) produces results that are consistent with both the
SP and CP (with respect to A) but the result is radically different. Neither the
conventional p-value (5%) nor Cox’s conditional values are consistent with the

likelihood ratio of 0.85 (> ), whereas the cp-value of 46%, obtained by conditioning

on the DDF statistic, is quite consistent with the LR.

Also note that, whenever our data has a likelihood ratio greater than or equal to one, it
will be interpreted the same way by E. C. inference (a cp-value of 100%) regardless
of whether or not the experiment from which is comes is embedded in a larger
experiment; this is true even when the sub-experiments do not all come from the same
class. Hence conditioning on the DDF will cover the effect of any other ancillary

statistic whenever y >1, without breaking the SP.

When we use E. C. inference, there is much more agreement about the interpretation
to be placed on a given likelihood ratio (regardless of model differences) than when

we use conventional inference.
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