Chapter 10. Conditioning on the DDF statistic in

cases that are not log-symmetric.

In this chapter we look at a number of different scenarios and compare the results

produced by E. C. inference with those from conventional inference.

We are able to state the general form* of the DDF statistic for tests on the Exponential
mean, two Gamma parameters, the variance of a Normal with known mean, and one

of the Weibull parameters. Although we can always find the value of z(y,) for any
particular y,, in most of these cases we cannot find z(-) analytically. The exceptions

to this are several scenarios involving the exponential model where we can find 7 ()

by solving quadratic and cubic equations; in these cases we are able to discuss the
general nature of the cp-function. We identify a type of scenario where E. C.
inference breaks down in the sense that it produces significantly small cp-values for
non-significant likelihood ratios, and find that taking sufficiently large samples can
solve this problem. Finally, we examine an artificial model (the Gradient model)
designed to illuminate a number of the issues that arose in Welch’s Uniform case. In
that case, both of the rival methods breached the sufficiency principle whereas, in our
example, they do not, this example provides a better basis for comparing the

conditional and unconditional approaches.

10.1 Tests on the variance of a Normal population.

Let X,,..., X, be independent and identically distributed random variables with a
N (u,c?) distribution where 1 is known and & is the unknown parameter of

interest. Consider hypotheses of the form H: 6 = o} versus K:¢° = o7,

(c7,02 eR"). Let q:j—jz\/§>o and V =Y (X; - )’ >0.

! That is, the form that can be applied to any particular pair of hypotheses.
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Then

n

( ) )n {—Z(x.—#)Z}
o) eXpLr
y=LR(x)=— —
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@) el
=0 op- -2}

y is a one-to-one function of v, increasing when o, <o, (g <1) and decreasing

when o, >0, (q>1). Also, g<l=>ye(q",») and g>1=ye(0,q").

We can use the fact that - has the 2 distribution to find the DDF statistic:

D(y):‘F(Z(In y—nzlnq)j_F[Z(ln y—nlznq)q2]
1-9%) 1-9°)

where F is the distribution function of a » random variable.

Example 10.1

Let X,,..., X,, be arandom sample froma N(0,5°) population and suppose we

want to test the null hypothesis o =1 against the alternative o =2 (i.e. q=+/2).

20
The densities of V = Z X? under H and K are shown below.

i=1

Figure 10.1

Densities of V under H (variance=1)
and K (variance=2).
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The LR, y €(0,2'°) =(0,1024). Suppose that we observe data such that

20
V= z x> =32 (shown on the above plot). From the plot, it is apparent that the

i=1
likelihood ratio of this data is not particularly small: y=2"¢™® =0.3435=L

indicating weak evidence against H. However the conventional p-value is

P, (V >32) =4.33% usually interpreted as strong evidence against H relative to K.
Inserting g = V2, n=20 and In y =1n(0.3435) into the formula for D(y), we find
D(0.3435) = 0.6733. We can numerically derive the fact that 0.6733 = D(2.5468)

(see below).

Figure 10.2

Plot of D(y) against y for test of variance =1 versus variance=2.
Observed value of y<1 and corresponding y>1 are shown.
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Thus 7(0.3435) = 2.5468 and hence cp(0.3435) = 2245239%8 1) _ 94 129, leading us

(2.5468-0.3435)
to a conclusion that is consistent with the observed value of y i.e. the data does not

constitute strong evidence against H relative to K.

Large samples.

Right-sided tests on the Normal variance (i.e. o, > o;) have likelihood ratios in the

range (0,9"). Thus the range of y -values that are greater than one is very limited
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whenever n is small and the hypothesised values are close together (recall q = ‘;—j).

For example, suppose that o, =1.05x 0, and n=2, then y € (0,1.1025) and, for all

y <1, the value of z(y) is bounded above by a value that is close to one (i.e. 1.1025).

Since cp(y) == is increasing in 7z(y) for any fixed y, even the cp-values of
moderately large y will tend to be low in such cases. For instance, the observation

y =4 is not significant evidence against H relative to K (from a likelihood point of

view), but (1) <1.1025 and hence cp(2) < 228-%) =39%. This is a significant

value, but not as significant us the unconditional p-value which is (1.2x107°)%.

As n increases so does the bound, q"(>1). To see what affect this has on the test
result, we find () and hence cp(3) for various n between 2 and 10000 when

g =1.05; we also show the conventional p-value of y =+ in each case.

Figure 10.3

Variance model with g=1.05. Plot of cp(1/4) and
p(1/4) for various sample sizes (n).
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For n in the range 2 to 200, we note that both the cp-value of % and the p-value

increase as n increases although the p-value is a great deal smaller and is still less
than 5% when n =200 while the cp-value is greater than 10% for all n>10.
However the more interesting result appears when we let the sample size increase to
10000.
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Figure 10.4

Variance model with g=1.05. Plot of cp(1/4)

for 200<n<10000.
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Figure 10.5
Variance model with g=1.05. Plot showing p(1/4)
decreasing as n increases, 200<n<10000.
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The cp-value of y =% for n> 200 shows the same pattern as for smaller n,
increasing (slightly) as n continues to increase. But the p-value of y =+ behaves

quite differently: having achieved a maximum value (still less than 5%) at some n
close to 200, it then declines steadily as n increases further, until it is (again)

indistinguishable from zero. We can show why this happens.
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Let F be the distribution function of a » variable, then the conventional p-value is

defined as:

p(y)=R,(Y <Y)

1F (Zqz[ln y—znln q]j.
1-0a%)

20°[Iny—nlInq]
(1-9°)

When q>1and y<q", — o as n— oo, and hence

lim p(y) =1-F () =0.

Note that this is true for all finite values of y, no matter how large. This is an

example of the phenomenon that we discussed in Chapter 3 for the Normal location
model. As the sample size and, hence, the power of a test increase, the distributions
under the two hypotheses become increasingly far apart with the result that we
eventually obtain extremely small p-values even for data with a large likelihood ratio.

By contrast, cp(4) appears to converge to some value <25%, as n increases®. (Both

cp(y) and p(y) are bounded above by y - this is true generally.)

We have shown that, when q =1.05, the poor quality of the conditional inference for
small n can be overcome by increasing the sample size, which does not have to be

very large before we get reasonable conditional inferences from y=+. In

comparison, the conventional inference deteriorates as n increases and does not give

an accurate interpretation of y =+ forany n.

2 It is tempting to wonder if cp(y) — ryy) =20% . Note however that, although the distribution of

V' tends to a Normal as N increases, the limiting distribution is N (nO'Z, 2n0'4) and the distributions

under the two hypotheses have different variances as well as different means. Thus we cannot, simply,
use the log-symmetric case to show that the cp-value converges to this limit.
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10.2 Tests on the mean of an Exponential population.

Let X ~ Expo(¢) where 8 =E(X). The density of X is given by:
f,(x;0)=1e™’ x>0, >0.

Exponential distributions are widely used to model time-related variables such as the

length of telephone calls and they play a prominent role in the Poisson Process.

For any two hypotheses H: 6 =6, and K: & =6, the likelihood ratio statistic, based
on a single observation, X, is:

y = LR(x) = Zexp{-x(z - 1)}

= q-exp{(GZH)x},

&

where ¢ =7

>0. y is aone-to-one function of x, increasing when 6, <6, (q<1)
and decreasing when 6, > 6, (q>1). When q<1, ye(q,») and when q>1,

ye(0,q).

The conventional p-value.

For this model, the conventional p-value for testing two simple hypotheses is:

1-e%, 6,<6,
p-value(x) = .
e M, 6, >0,

This can be re-written in terms of y as:
-, q<1

p(y)=y
L,  g>1.
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The value y_ such that p(y,) =5% is the critical likelihood ratio for the conventional
5% test — we reject H at 5% whenever we observe y <y_. For our conclusions to be

consistent with the standard interpretation of likelihood ratio, it must be the case that

y, is reasonably small (e.g. less than £ or ). The following plots show the value of
y. for a wide range of values of q :%.
Figure 10.6

Exponential model: Critical likelihood ratio of
the conventional 5% test versus q (q<1).
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Figure 10.7
Exponential Model: Critical likelihood ratio
of the conventional test versus q (g>1).
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The smallest value of y ever required to get a p-value of 5% is =%z when q =0.0513.
For other values of g, larger y -values — often greater than one — are sufficient to give

a significant result. Note that as g —1 (from above or below) the value y, —1 and
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this is true for all significance levels, not only 5%; as the hypothesised values become
closer together, it is possible to get (any) significant p-value for likelihood ratios that

are close to one, that is, close to neutral evidence. Alsoas q— 0 or g — o, the

critical likelihood ratio increases without bound, from which it follows that any value

of y, no matter how large, will be significant (at any value of « , no matter how

small) for some hypothesis test.

Exhaustive conditional inference.

The distribution function of Y can be derived from that of X to give the ancillary
DDF statistic:

D(y)

Il
VR

In general we cannot solve D(y) = D(xz(y)) for z(y) analytically, except for certain
values of g where D(y) is a polynomial with known solutions. Note that the value
of g defines an inference class for both exhaustive conditional and conventional

inferences. The cp-value (or p-value) of any likelihood ratio, y, depends on 6, and

6, only through q.

Example 10.2

TestH: 8=6, against K: =26, (forany 6,),i.e. q=2.

Hence D(y)=(){1-4}=-1y’+1y (ye(0,2)) and the equation D(y)=a is:

y>—2y+4a=0
=Yy, =1-vl-4aandy,=1+vl-4a=2-y,
= z(y)=2-y.
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Since we have a general formula for the pairing function, we can also obtain one for

the cp-value as a function of y:

[(2-y)1] _
cp(y) = )[/(2—)'))/—3/] _%’ ye(0,2)
100%, ye2).

This compares with the unconditional p-value, p(y) :VTZ, ye(0,2).
The following table compares the p-value and cp-value for various outcomes.

Table 10.1

y = LR(data) | Equivalent coin | cp(y)% | p(y)%
toss result®,

< hhhhhh 0.78% | 0.006%
i hhhh 3.125% | 0.1%
1 hh 125% | 1.6%
1 h 25% 6.25%
L * 31% 9.8%

=
o

[~
*

45% 20.7%

=
-

The conventional p-values are small even where the likelihood ratio is moderately

large and indicates that there is little evidence against H relative to K.

We take the opportunity afforded by this case to illustrate the point we made in the
log-symmetric case, namely, that the conventional p-value is the mean of a number of
conditional probabilities only one of which (the cp-value) corresponds to the observed

value of the DDF statistic (the particular ‘sub-experiment’ performed). In this case,

forany y, €(0,1), p(yo):yTg and cp(y,) =% . For convenience, we use an ancillary

® For testing H: Coin is fair against K: Coin is double-headed.
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statistic equivalent® to the DDF statistic, i.e. A=Y —1|:{1—4D(y)}%, and note that
A~Uni(0,1), thatis, f,(a)=1 a<(0,1) (under both hypotheses).

We will show that

p(yo) = PH (Y < yo)
:J'F?H (Y <y,|A=a)-f,(a)da

= EA[l_jH (Y <y, [ A)]

First note that:

P,(Y=1-a|A=a), 1-a<y,

P.(Y<y,|A=a)=
( Yol ) {0, otherwise.

For example, suppose that y, =%. If we conditionon A=Y —1}=0.8, we find that
P,(Y <i|A=[1-Y|=0.8) =P, (Y =0.2| A=0.8) since 0.2 is the only value less than
1 consistent with A=0.8. On the other hand, P, (Y <1| A=0.6) must be zero since

there is no value of y less than 1 that is consistent with A=Y —1|=0.6.

By definition, P, (Y =1-a| A=a) =cp(1-a) and hence:

(1-a)

P.(Y<y,|A=a)=1{ ?
W (<ol ) {O, O<a<l-y,.

, 1-y,<a<l

Thus,
[B(Y <y,|A=a)- f,(a)da
: 1-y,

- j{<1;>x1}da+ | {ox1da

1-y,

=5~ p(y,).

* Thatis, A is a one-to-one function of D(Y'), which catorgorises the values of Y the same way and
produces the same 7(-) and cp(-) functions.
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The conventional p-value is the average (over a) of the probabilities

P,(Y <y, | A=a) and this average is used to interpret the significance of the
observation, vy, , despite the fact that whenever we observe Y =y,, we must also have
observed A=1-y, so that P, (Y <y,| A=1-y,) =cp(y,) is the only one of these

conditional probabilities that is relevant. Note also how the zeros in the average pull
the p-value down; these are associated with an increasingly large proportion of the

distribution of A (or the DDF statistic) when vy, is small. For example, when y, =4,

P,(Y<y,|A=a)=0 forall ac(0,2) and these values constitute 2 of the
probability mass of A. However, even when y, is not much less than one, the p-

value, as an average, is dominated by those probabilities associated with unobserved

values of a (and, in the case q =2, all of these probabilities are less than cp(y,)

since cp(-) is an increasing function).

Example 10.3

TestH: 8 =6, against K: =156, (forany 6,),i.e. q=1.5.

Hence, D(y) = (2){1-2}=-£y* +¢y’ (y<(0.15)).

The equation D(y) =a can be solved to find:

7(y) =1{3-2y+43(3-2y)(2y +1)},

Wi+2y-J3E-2)Q2y+D} | _
and hence cp(y) = {6y -3-/33-2y)(2y+1)} ’
100%, y € (1,1.5).

This compares with the unconditional p-value, p(y) :Sz—y;, y€(0,1.5).

The following table compares the p-value and cp-value for various outcomes.

298



Table 10.2

y = LR(data) | Equivalent coin | cp(y)% | p(y)%
toss result.

< hhhhhh 0.53% | 0.0001%
L hhhh 2.17% | 0.007%
1 hh 9.55% | 0.46%
1 h 21.1% | 3.7%

= * 276% | 7.2%

& * 44% 22%

Again we see that the conventional p-values are unreasonably small when there is not
much evidence against H: even y =1 returning a significant p-value. We might
consider that the cp-value of less than 10% for y =+ is also too small and we will see
that when q is close to, but larger than, one, the cp-value tends to overstate the

significance of the result, though not as badly as the p-value. This will be further
illustrated in the next example; in the section on Gamma distributions, we suggest a

solution to this problem.

Example 10.4

Consider the case where g =1.01, for example, a test of & =20.0 against 8 = 20.2,

based on a single observation. In this case, E. C. inference breaks down as it did

when we tested some hypotheses about the Normal variance using n=1.

Since y €(0,1.01), it follows that, for all y<1, 7z(y) e (1,1.01) and hence

0<cp(y) <oy - Thus cp(3) <1%, seeming to indicate that a likelihood ratio of

one half is significant evidence against H relative to K. This problem is insuperable as

long as the hypothesised values are extremely close together (6, > €,) and the data

involves a sample of size n=1. The cp-value is based not only on the observed

likelihood ratio, y,, but also on an unobserved value, 7z(y,) and, because of this, our
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method is not consistent with the likelihood principle. There is, thus, the potential for

situations, such as the present example, where our interpretations of y and cp(y) are

not in agreement, though this can never happen when y >1. (The conventional p-

value is far worse; in this case, p(%) is of the order of 107%%.)

No small likelihood ratios.

When g <1, no data has a likelihood ratio less than q since y (g, «). If q is not

very small, it follows that no data has a likelihood ratio that constitutes significant
evidence against H relative to K. Any inference made in such circumstances should

reflect this fact. In this section, we consider the cases q=+ and q=% for which we

have complete analytic results.

Example 10.5
(@) Let q=+.

We are testing hypotheses of the form H: 6 = 6, versus K: 0 =36, (for any 6,) and
y € (+,o0) which indicates that there is no observable data that constitutes evidence

against H as strong as the evidence from a single head in the coin toss case.

We already have the pairing function for the case where q=2,i.e. z_,(y)=2-Y.

In the present case the hypotheses are the opposite way around, so we can use the

result given in §9.5 for finding the pairing function for the swapped hypotheses. Thus

7(y) ={r,, ()} ={2-1}" =35 and it follows that

[z _
ep(y) = sy =20%, 3<y<l1
100%, y>1.
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The conventional p-value is: p(y)=1-5., Vy e (3,%). When y is relatively small
(i.e.y — 5 from above) the p-value approaches zero, but the cp-value is never less
than 50% which is consistent with the fact that there can never be strong evidence

against H.

(b) Let gq=2.

The hypotheses are of the form H: 6 = 6, versus K:0 =26, (forany 6,) and
y € (%,2). A likelihood ratio of two-thirds is such weak evidence that it cannot be

characterised by the paradigm coin-tossing case that we have generally used. Instead

consider the following scenario.

There are two dice. Each of the dice is fair regarding each of its six faces but Die A
has faces that are numbered {2,2,2,2,6,6} and Die B has all six faces numbered “2’.
One of the two dice is randomly selected (with a 50:50 probability®). The chosen die
is rolled repeatedly. For testing Ha: “The chosen die is Die A’ against Hg: “The

chosen die is Die B’, the outcome “2,2,2,...2" has a likelihood ratio of y =(%)".
| —

Thus the value y =% (which is the strongest evidence we can find against the null
hypothesis in the Exponential case with q =% ) is equivalent to the weight of evidence

against Ha obtained from a single roll of the die resulting in the outcome ‘2. This
evidence is extremely weak and we can verify this by comparing the densities of Y

under H and K when q=4%.

® This probability does not affect the likelihood ratio and hence the evidence in the data. However
different prior probabilities are capable of biasing our perception of the meaning of the data, hence we
stipulate these values.
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Figure 10.8

Density functions of Y under H (solid line) and K.

2/3 1 2

For y <1, the density under K is greater than that under H, but the two densities are
so alike that no value of y is much more consistent with K than with H. However the

conventional p-value of (say) y =0.68 is 3.9%.

We already have the pairing function for the case where q=1.5 from which we can

derive the pairing function for this case:

) 4y
"0 ey 2+ By 2@t

Hence, for <y <1,

{y+2-y3@y-2)(2+Y)}

{6-3y-+3By-2)2+y)}

cp(y) =

This compares with the conventional p-value: p(y) =1—($), ye(%4,0). The

following plot shows the conventional and conditional p-values as functions of y .
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Figure 10.9

Comparison of the cp-value and the p-value.
Exponential case: y>q=2/3.
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The first point to note is that cp(y) is a decreasing function® of y. This conflicts
with the interpretation we have of the likelihood ratio as a measure of the evidence
favouring H relative to K. However, the conflict is real at a practical level only if we

insist that * cp(y,) <cp(y,) " must be interpreted as * y, is stronger evidence against H
relative to K than y,’ regardless of the actual cp-values, i.e. regardless of whether
either of the values is at all significant. Despite the fact that the cp-value is
decreasing, the statements *50% < cp(y) <66.6% ’ and ‘2 < y <1’ are consistent to

the extent that both imply that any evidence against H relative to K is extremely weak.

Note also that for values of y close to one, the cp-value is less than the p-value. In

all the other examples we have considered, the p-value has been smaller than the cp-
value and, therefore, sometimes significant when the cp-value is not. This might have
lead us to conjecture that it is always so. However, this case and the gradient model
(considered below) provide counter-examples to this conjecture. It is true that in all

these cases, neither the p-value nor the cp-value is remotely significant so we have no

® It is impossible for the (unconditional) p-value to be a decreasing function of the likelihood ratio
statistic, since the p-value is simply the (cumulative) distribution function, under the null hypothesis, of
the likelihood ratio statistic at the point observed. However, when we condition on an ancillary

statistic, we are no longer dealing with a single probability distribution. The distribution of Y | A=a
is different (under any given hypothesis) for each value of a, and, when we use an EAS, any two
distinct values of Yy (<1) are associated with distinct values of a and, hence, with distinct
distributions. If Y is continuous and Y, <y, <1, it follows that P(Y <y, ) is less than

P(Y <,) . butitdoes not follow that P, (Y <'Y;) is necessarily less than P, (Y <y,) when P,

&

and Paz refer to different (conditional) distributions.
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counter-example to a claim that it is not possible for the conditional test to yield a
significant result when the unconditional test does not. In fact, it can be shown that,
in the gradient model, the cp-value is less than the p-value only when it is greater than
50%, so that neither measure is significant. The question of whether it is possible for
the conditional test to deliver a significant result when the conventional test does not
remains open: we have no instances of this happening but no proof that it cannot
happen.

Despite these oddities, the cp-values are consistent with likelihood ratio values in
showing that no data constitutes significant evidence against H relative to K when

q=2%. The conventional p-values, on the other hand, are significantly small (tending

to zero) for y close to Z.

Bounds on the cp-value for a range of Exponential cases.

For any observed likelihood ratio, y,, we can find cp(y,) numerically, but since we
cannot find z(-) and hence cp(:) analytically (for more than a few values of q), we

cannot discover the general nature of the cp-functions. The following bounds are

useful in providing some extra information.

The following general result compares the cp-value for the Exponential model

(0 < g<1) with that in the log-symmetric case.

Claim: When g <1, cp(y)>y/(l+Yy).
Proof.

When q<1, D,(y) = ()" {£-1}.

For y<1, let

Aq(y) = Dq(y) - Dq(y_l)

= DD
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Then diAq(y) = A, (y) can be written as:
Yy

1
1

A (Y) ==

)y -na-y).
(1_q)(y )y -DA-y*™)

Since 0<y<1 and q<1, all the components of this product are positive, and hence

A, (y) >0 forall such y and q.

Thus vq<1,
rr;gleq(y) <A,)=D,(-D,0)=0
= A, (y)<0, Vy<l

Hence vy <1,
D,y (y) <D, (y ™)
© Dy (7,(¥)) <Dy (y ™)
S 7 (y) >y
since z(y) and y™ are both greater than one and the function D(-) is decreasing in

this range.

Hence also,

Y(ﬁq(Y)—1)>y(y’1—1)= y
(7, (N)-y) ~ (y'-y) 1+y

cp,(y) =

From this it follows that, for all q <1, y/(1+y)<cp,(y) <y, since y isan upper
bound on all conditional (and unconditional) p-values of y. This is a convenient
result for approximating the cp-value, especially when y is small and the two bounds
are close together. For example, for any test where q <1, if we observe data with a
likelihood ratio of -, it follows that the cp-value must lie in the interval (9%,10%) ,

while the cp-value of data with a likelihood ratio of 5 must be between 3.4% and
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3.6%. When vy is not so small, the lower bound can still establish the non-
significance of the result, for example 7 >5% whenever y > 4 in which case we

know that cp(y) is also greater than 5%.

We can compare the lower bound on the cp-value (i.e. ) with the conventional p-
values associated with various g <1. In the following plot, q is in the range:

1 1
01 <0<71-

Figure 10.10
Plot of conventional p-value(y) versus y
for various values of 1/101<q<1/1.1.
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From the values displayed in this graph, it appears that it is only when g > that the
p-value is greater than the cp-value for any values of y, and since vy is always
constrained to be greater than q, such values are close to one and both types of p-

value are large.

As g — 0, the range of y tendsto (0,) and
-1 _
D(y ) (y—l)uq) |:(1 yq):|_>1,
D(y) (y-a)
hence 7,(y) >y~ ! and cp,(y) = 5y - Thus the cp-value converges to the lower

1+y

bound as g decreases.
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It can also be shown (by derivations similar to the above) that when q >1,
cp(y) < (lTyy) this being a more constraining upper bound on the cp-value than vy .

This tells us that any data with a likelihood ratio < 35 is significant at the 5% level.

-1
Also, lim Dly")

4= D(y)

=1 and hence cp,(y) - 5y (from below) as g —oo.

Exhaustive conditional inference, in the Exponential case, tends to that of the log-
symmetric case when either q = ‘Zl—z — 0 or g — o in both cases the cp(y)
approaches the bound shown in the above plot, which is a lower bound for q <1 and
an upper bound for g >1. By contrast, p(y) — 0 for all finite y when either g >0

or g —»> o (see below).

Figure 10.11

Plot of the conventional p-value as a function of the
likelihood ratio for a large and a small value of g.
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Note that p(y) <5% even for very large values of y that constitute strong evidence

in favour of H relative to K.
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10.3 Scenarios involving the Gamma distribution.

Larger samples from an Exponential population.

Let X,,..., X, be independent and identically distributed random variables, each with

an Expo(@) distribution. Let T :Z X,,then T ~Gamma(n, &) (also called an

i=1

Erlang distribution) with density:

f(t;0)=-0"t"""", t>0, >0 (n>1 known).

Hence the likelihood ratio, for testing @, is given by:

y =ty = d" exp{ SR,

where g = 2>O When q<1, ye(q",») and when q>1, y<(0,q"), thus the

support of Y tendsto R™ as n — .

Using a well-known relationship between the Erlang distribution and the Poisson, it is

easy to show that:
D(y)dF(n-LA4)-F(n-L4)l,
where F(r;A) is the value, at the point r, of the distribution function of a Pois(1)

random variable and

In(y-q™")
AT
fo =02

The special case n=1 reproduces the detail of the Exponential models examined in
the previous section. In that section we gave the results of exhaustive conditional

inferences for various q; we now examine the effect on those inferences of increasing

the size of the sample. We examine the cases q =2 (which gave good results for
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n=1), g=% and q=% (which gave reasonably good inferences but where the cp-
value was found to be constant (y <1) in the first case, and decreasing in the second)
and q=1.01, which gave very poor results, producing significantly small cp-values
for moderate y. Because the derivations are somewhat laborious, we consider only a

small, representative number of likelihood ratio values, less than one. We also
compare some of the cp-values with the corresponding conventional p-values which
do not work well when n =1(see previous section). Note, when comparing the plots

of cp(y) vsy, for various n, that the range of y varies depending on the value of n.

Results for the case gq=2.

The following table shows the cp-values of various likelihood ratios for three sample

sizes, also displayed in the following plot.

Table 10.3
y=LR(t) > = % 3 5 (0.8)
n=1 2.5% 5.0% 12.5% 25% 40%
n=10 4.4% 8.4% 18.7% 31.9% 43.6%
n=20 4.6% 8.7% 19.1% 32.4% 43.6%
Figure 10.12
Plot of the cp-values for tests of q=2 on the
Exponential mean for n=1, 10 and 20.
45 —
40 —|
cp-values %
O
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The cp-values converge fairly soon with virtually no difference between the values
when n=10 and n=20. The values are higher than when n=1 but do not, in any

way, contradict the natural interpretation of the likelihood ratio values.

The conventional p-values, for n=1 and n=20 are as follows.

Table 10.4

y=LR(MO | 3% 1 i B 1%
n=1 0.06% 0.25% 1.56% 6.25% 16%
n=20 0.43% 0.81% 1.78% 3.12% 4.5%

In contrast to the cp-values, the p-values associated with non-significant likelihood

ratios (say >1) become smaller as n increases so that although the p-values of the
moderately large likelihood ratios, y =+ and y =13z, are not significant when n=1,

they are significant when n=20. Thus increasing the sample size has made the
conventional inference worse, rather than better (see Figure 10.13, below). We
commented on the same phenomenon in the section on the Normal variance; in
general, when the sample is large enough to produce a test with very high power, the
test is biased in favour of the alternative hypothesis to the extent that it gives

significant p-values to data with moderate, or even large, likelihood ratios.

Figure 10.13

For tests of q=2: Plot showing the p-values and
cp-values for n=1 and n=20.
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Results for the case q = %.

The cp-values for this case are as follows. Recall that when n=1, cp(y) =50%, for

all $<y<1.

Table 10.5

y=LR® 5% i i 3 % (08)
n=1 * * * 50% 50%
n=10 5.0% 9.7% 21.4% 34.8% 45.2%
n=20 4.9% 9.5% 20.9% 33.4% 44.4%

(* y>q" whichequals £ when q=1%, n=1.)

The main advantage of larger n, in this case, is that it increases the range of y so that

we can get data that provides strong evidence against H. The cp-value is constant

over <Yy <1 when n=1 and this seems counter to the notion that the likelihood

ratio can be regarded as a measure of the evidence in favour of H, relative to K, but

when n is larger, this effect disappears — the cp-value is again increasing in y, so

that it distinguishes between different likelihood ratios.

Figure 10.14

Plot of the cp-values for tests of q=1/2 on the
Exponential mean for n=1, 10 and 20.

cp-values
%) 40

30 —
20 —

10 —H

Again we see fairly fast convergence of the cp-values as n increases.
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Results for the case q = 2/3.

In this case, we found that, when n =1, the cp-value decreases, as a function of y, on
the interval (£,1). This result is very counter-intuitive although the cp-values

themselves are reasonably consistent with the likelihood ratios, none of which can be
regarded as constituting even moderate evidence against H relative to K. Here, we

compare these results (cp-values) with those from samples of size 10 and 20.

Table 10.6
y=LRO | % % 3 3 25 (07) | & (08) | 25 (0.9)
n=1 * * * * 60.0% 54.7% 52.0%

n=10 5.0% 9.8% 22.0% |353% |42.7% 45.2% 47.1%
n=20 4.9% 9.6% 21.1% | 34.4% |42.0% 45.2% 47.1%

Figure 10.15

Plot of the cp-values for tests of q=2/3 on the
Exponential mean for n=1, 10 and 20.
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The same pattern emerges as when q=3. For larger n, the cp-values converge

quickly and become an increasing function of the likelihood ratio; the values

themselves are plausible with a likelihood ratio of % being significant at the 5% level

while a likelihood ratio of 5 is not.
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Results for the case g = 1.01.

In this case, when n =1, exhaustive conditional inference performs poorly assigning a

cp-value of less than 1% to the non-significant likelihood ratio,  and (see below) a

cp-value of less than 4% even for y=0.8. When q=1.01, y e(0,1.01") which

equals (0,1.01) when n=1; this restrictive upper bound on z(y) causes the cp-

values to be unrealistically low. By increasing n, we can make the upper bound

larger and this may improve matters. Since 1.01" increases only slowly, we use

larger values of n than in the previous sections. The cp-values for n=1, 200 and

8000 are given and plotted below.

Table 10.7

y=LR®) | % i i 2 iz (07) | 7 (0.8) | 737 (0.9)
n=1 0.05% |0.11% |0.33% |0.97% |2.24% 3.77% 8.11%
n=200 2.68% |5.50% |14.90% |28.89% |38.42% |43.05% |48.33%
n=8000 |4.74% |9.04% |19.92% |33.40% |41.62% |45.29% | 49.28%

Figure 10.16

Plot of cp(y) versus y for tests of the Exponential mean

with g=1.01 and n=1, 200 and 8000.
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In this case the cp-values take longer to converge, as one would expect. The values

for n=4000 (not shown) are very close to those for n=8000 suggesting that
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convergence has occurred by this point. The cp-values for large n are consistent with
the likelihood ratios: y =+ and y =+ have cp-values of approximately 20% and 33%
respectively; this contrasts with the highly significant cp-values produced when n=1.
Thus it seems that we can overcome the problem of poor results for close hypotheses
by increasing the sample size. Below, we give the corresponding results for the

conventional p-value (‘0%’ indicates a value less than 107°%).

Table 10.8

y=LR®) | % i 0 B 7z (07) | 35 (0.8) | 737 (0.9)
n=1 0% 0% 0% 0% 0% 0% 8.7x10™%
n=200 0% 0% 0% 3.0x10%% | 0.63% 5.19% 20.30%
n=8000 | 7.9x10°% | 0.13% | 2.28% | 11.00% 19.78% | 24.21% | 28.53%

Figure 10.17

Conventional p-values for testing q=1.01 using
various sample sizes.
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Although we see some improvement in the p-value when n is increased, the
performance is still not good. A likelihood ratio of 0.7 is still rated highly significant

when n=200 and y =% has a p-value well under 5% even when n=8000. To

investigate further, we increased the sample size to as high as 200,000 with the
following results. (Note that n=1 and 8000 are also displayed in this graph.)
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Figure 10.18

Plot of the conventional p-value as a function of
the likelihood ratio for various sample sizes.

py)
%

y=LR(data)

This shows the phenomenon that occurred in tests on the Normal variance. Initially
the p-value improves when we increase the sample size, but as we increase it still
further, the increasing bias in favour of K asserts itself so that the p-value decreases

again. In this case there is little difference between the p-values of y based on n=1

and those based on n =200000 — both assign small values to likelihood ratios close to

one. We can understand why this happens by looking at the distributions (under H

and K) of the test statistic T = Z X, . (The following plots indicate those values of t
i=1

where y equals 0.25 and 0.9. The p-value is right-sided.)

Figure 10.19

Null density of X for the right-sided test q=1.01, n=1.

y=0.9

1.0 —
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0.0 —

0.00
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When n=1, we are dealing with the single exponential distribution, i.e. t = x, (the
value of x corresponding to y =0.25 is off the graph to the right). The p-values of
y=0.9 and y =0.25 are obviously close to zero. Because the distributions under H
and K are so similar (if both were graphed on these axes we could not distinguish
between them), the likelihood ratio is close to one over the bulk of the distribution(s)

and smaller values are all in the extreme right-hand tail, hence the miniscule p-values.

Figure 10.20

Null and alternative densities of T for n=8000.

()

t=sum of xi

The test statistic, T , has mean of n@ and standard deviation of |6?|\/ﬁ (and is

approximately Normal for large n). Thus the distributions become further apart as n
increases; we can confirm this by looking at the difference between the means
[n6,—nb,|

measured in terms of either of the standard deviations, i.e. o Jn- | 915—92 |. This

value increases as n increases.

When n=8000, the distributions of T , under the two hypotheses, are clearly
distinguishable but overlap (in terms of probability) considerably. The densities cross

over each other (i.e. y =1) not far from the centres of the distributions and, as a result,

the likelihood ratio is 0.9 not far from the centre of the null distribution giving it a

reasonably large p-value.
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Figure 10.21

Null and alternative densities for n.=200000.

y=.9 y=.25

f(t)

t=sum of xi

By the time n equals 200000, the distributions overlap only a little and the point at
which the densities cross is far from the centres of both and in the right tail of the null
distribution, as is the point with a likelihood ratio of 0.9, thus the p-value is again very
small. Evidently as the distributions get further apart this effect will become more
pronounced: we could make the p-value of any likelihood ratio — no matter how large

— very small by using a big enough sample.

Tests on the second Gamma parameter.

Let X ~Gamma(e, ) where « and £ are positive parameters, then:

f (X a,p)= ﬁﬁ*“x“’lefﬁ, x> 0.

The parameter £ gives the scale in the sense that, if V ~ Gamma(«,1), then

NV ~Gamma(a, ). X has mean and variance of8 and af°, respectively. The
Exponential and Chi-squired distributions are subsets of the Gammas; the first
corresponds to the Gamma(l,6) while the y, is equivalent to the Gamma(3v,2). In
the previous section, we considered various tests on the parameter S (called #) when

a was a known integer, n, a situation that arises when we sample repeatedly from an

Exponential population. This is sufficient to demonstrate exhaustive inference on 2.

We now consider using E. C. inference to perform tests on the unknown « when g

317



is known. (We could also use E. C. inference to perform tests on € = («, )" when

neither parameter is known.)

For fixed, known g we test H: o = o, versus K: a = «, for which the likelihood ratio
is:
y= 11:((‘;2)) ﬂ(ar%)xf(az*%)

=X, x>0

s T'(ay)

where § =a, o, and k= B° 125

>0, hence ye(0,0) Va,, , and S.

The DDF function is:
D(y) = Fy «[(D) ™ 1-Fy ([ 211

Example 10.6

Let # =1, inwhich case « isthe mean and also the variance of the Gamma

population. Suppose we want to test H: & =8 versus K: a =5 which is a left-sided

test in x. The distributions are shown below.

Figure 10.22

Plot showing the densities of X under H and K
and the coventional 5% cut-off for rejecting H.
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A conventional test rejects H in favour of K at the 5% level whenever x <3.98,

however the likelihood ratio of this value is y =0.30 which is not at all significant’.

Suppose x =3.98 and thus has a conventional p-value of 5%, how does an exhaustive

conditional test interpret this datum? In order to calculate cp(0.30), we need to find

7(0.30) from the DDF function.

Figure 10.23

Using the DDF statistic to find pi(y) for a Gamma test.
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D(0.30) equals 0.3174 as does D(2.85), hence 7(0.30) =2.85 and
cp(0.30) =21.8% . Again, the E. C. test result is far more consistent with the

likelihood ratio than is the conventional test.

10.4 Tests on the Weibull model.

The various Weibull distributions are widely used in industrial contexts to model the

failure rates of equipment and breaking strengths of materials.

If X ~Weibull(e, ), then X has the following density:
fy (G, B) = afpx“ " exp{-(%)"}, x>0, @>0, >0.

" Less evidence against H that hh in the coin toss case.
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The distribution function is:

Fo (X, B) =1-exp{-(%)"}, xeR".

As in the Gamma case, g is a scale parameter. When o =1, X has an Exponential

distribution with @ = . The hazard function (used in survival analysis) of a Weibull

variable is a multiple of x* and thus depends on x only through the value of « .

To test competing values of S where « is a fixed, known value, we use the

likelihood ratio:

y = (&) expfx“ (B, - BV}

When %<l, y isincreasing in x and y e ((%)”,oo), otherwise y is decreasing in x
and y e (0, (%)"‘) . Note that, for a given value of (%) , the support of Y is larger

when « is larger. Using the fact that X“ ~ Expo(#“), we can find the DDF statistic:

where r = (%),

Since this has the same form as the Exponential DDF (substituting r = (%)“ for

q :%j) it follows that cp(y) — g5 as r — 0 or r — oo and hence this occurs, for any

valueof%,as a—>o.

When (%)“ is greater than one but very close to it, we will have the same problem —

small cp-values for moderate likelihood ratios — that we found in the Exponential case

with g =1.01. This can be overcome by taking a sufficiently large sample of Weibull

observations. The Exponential model is a special case of this model, as shown below.
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If X,,..., X, are independent and identically distributed Weibull (e, #) random

n
variables where « is known, then V = Z X/ is a sufficient statistic for £ and has a
i=1

Gamma(n, g“) distribution, of which £ is the only unknown component. In the
section on large samples from Exponential populations we carried out tests on g“ for
the special case a =1. Therefore the conditional tests that we performed for g =1.01
(i.e. B,=1.015) are also valid for testing S, =1.0054, given « =2, or for testing

B, =1.0018, given a =10, in the Weibull context®. This shows that problems caused

by hypotheses that are close together can be solved by increasing the sample size.

The following example involves less extreme values of (%)“ .

Example 10.7

Suppose a =2 ; we want to test H: #=1 versus K: # =2, thus r =4 and

y =4exp(—25) with D(y) =4y (4-y), y(0,4).

Figure 10.24

The DDF function for the test of beta=1 versus
beta=2 (alpha=2) in the Weibull model.

0.423 1.788
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8 Note: 1.005=1.01 and 1.001=1.01.

321



This is a right-sided test in x and the conventional 5% rejection region is(1.731,) ,

however x =1.731 has a likelihood ratio that is not much less than § (0.423=-%;),

as shown in the plot below.

Figure 10.25

For this value and the values associated with likelihood ratios &

Densities of Weibull random variables and
associated likelihood ratios of three values.

y: 1236 1/8 1/16

0.9 —

derived the cp-values and p-values.

Table 10.9

X y=LR(x) | z(y) | p(y) | cp(y)
1.731[0.423 (~1) | 1.788 | 5.0% | 21.4%
2.150 [ 0.125 (&) [2.589 | 1.0% | 8.06%
2.355 | 0.0625 (&) | 2.905 | 0.4% | 4.19%

and 3, we have

The cp-value is significant at 5% only for the most extreme of the three values, that

with a likelihood ratio of 5, in contrast to the p-value. Probably the results would be

better still were n>1.
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For testing hypotheses about the value of & when £ is known, we find exhaustive

inferences by using the likelihood ratio:

fx (%a,8) o ~
Y = Xl = () B X expf=() + ().

The bounds on the likelihood ratio are: y € (0,;%) when 2->1and y e (-, o) when

Z—; <1. Asinthe Cauchy case, y is not a one-to-one function of x, but instead has a

turning point at x = #. This makes the task of finding the distribution of Y , and

hence the DDF function, more laborious and we do not give the details here.

10.5 A better model for studying the Welch phenomena.

In the Welch case, the unconditional approach has been shown to have very
undesirable, conditional properties when examined in the light of the universal
ancillary® statistic R. However, we have shown that the conditional inference, based
on R, also has undesirable features because it breaches the sufficiency principle. This
only becomes obvious when we look, in detail, at the inferences as they apply to tests
of two simple hypotheses, i.e. cases involving binary parameter spaces. The statistic
R is not ancillary, in the restricted sense, with respect to any binary parameter space
because it is not a function of the likelihood ratio statistic, which is the MSS in such
cases. The conditional approach produces different results from data with the same
likelihood ratio and is thus in breach of the sufficiency principle. However the
situation is complicated by the fact that the unconditional inference shares the same

flaw.

If we are dealing with a binary parameter space and an ancillary statistic is not a

function of Y (the MSS), then any frequentist conditional method based upon it will

% We use the term “universal ancillary” here in order to emphasise the fact that this statistic is ancillary
over a large parameter space whereas most of the ancillary statistics we discuss are ancillary only for a
given binary parameter space.
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breach the SP even if the unconditional approach does not. It is for this reason that
frequentists restrict the application of the conditional principle to (ancillary) statistics
that are functions of the MSS.

The following artificial example shares the technical simplicity and interesting
features of Welch’s case, without the problems created by a discrete likelihood ratio

statistic.

The Gradient Model.

Let X be a variable with density

f (X,0)=0x+1 xe(-3,3), 0<(-2,2).
For all &, the density is a straight line passing through the point (0,1) and having a
gradient of 8. The parameter, &, is neither a simple location nor a scale parameter,
although E(X) is a linear, increasing function of 8. When =0, X ~Uni(-%,2

212/

Figure 10.26

Density functions of X for various theta.

Large values of x are more likely when & is larger and the likelihood ratio

y =LR(X) =152 is increasing (decreasing) in x when 6,<6, (6, >6,); the bounds
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(2-6)
on the value of y are 75 and

(2+6)
(2+6,) *

Forany {6,,6,}, Y is a continuous variable,

unlike in the Welch case, hence it is possible to find a unique, non-arbitrary most

powerful rejection region for a test at any significance level.

When x =0, the likelihood (as a function of &) equals one for all &. Since the

likelihood is flat, the only non-arbitrary likelihood interval (LI) for @ is the 1 LI
containing the entire natural parameter space (—2,2). By contrast conventional

confidence intervals, based on x =0, contain varying amounts of the parameter space
depending on the specified coverage. These conventional confidence intervals have

some worrying features even when x =0.

Unconditional confidence intervals.

The unique, optimal (Neyman-Pearson), y -level rejection regions for left-sided
(6, < 6)and right-sided (8, > 6,) tests of H: 0 =6, are, respectively:
(-3, 16, )] and [u(@,,7) ,3).

where

1(6,7) = 3{/1- 01— 2y) + 6% [ 4 -1}
U0, y) =31+ 01-2y)+ 0?1 4 -1},

It follows that H can not be rejected, in favour of any simple alternative hypothesis, at

the < -level as long as:

1(6,%) < x<u(b,%).

This fact can be used to produce exact, unique, optimal (uniformly most accurate

unbiased) 100(1- )% confidence intervals for . The CI based on x is given by

C(x)={0:1(0,%) <x<u(8,%) &0 € (-2,2)} which is equivalent to:

2X—(1-a) 2x+(l-a)
G-x) " G-x)

C(x) { Jm(—Z,Z).
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The following plot shows the bounds that produce 50% confidence intervals
(a=0.5).
Figure 10.27

Gradient model: 50% Cls for theta
fromx=-0.2,0.1&0.3.

U

I T T T
3 -02 -01 00 01 02 03 04 05
X

T
-05 -04 -0

The endpoints of each confidence interval can be read from the vertical axis. Note

that the intervals are wider when x is close to zero.

The following plot shows the bounds for constructing 80% (dashed lines) and 90%
(solid lines) confidence intervals.

Figure 10.28

Gradient model. Cls based on the 80% and
90% upper and lower bounds.
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The three intervals shown are (from left to right):

i.  The 90% CI for @ based on x=-0.4.
ii.  The 90% CI for @ based on x =-0.1 which is equivalent to the 80% CI for
based on x=-0.1.
iii.  The 80% CI based on x=0.3.

We can see that these intervals have a number of counter-intuitive features similar to
those observed in the unconditional confidence intervals in Welch’s case. Thus, for
many values of x, the confidence interval contains all possible values of &

(Cl=(-2,2)) even though the stated coverage is not necessarily 100%. Specifically,

this is true whenever x is in the interval: (—5+ %,%—\/%) ; for instance, the 90% CI

contains all possible values of & whenever x isin (-0.276,0.276) . The interval
(—%+\/%,%—\/§) is wide, when the coverage is high (since « is small), so there will

be many values of x that produce Cls of this kind. Note, from the above plot, that,
when x =-0.1, both the 80% and 90% confidence intervals contain the entire
parameter space and are thus equal to each other as well as to the 100% CI. In fact,
the data x =—0.1 produces the same interval when the coverage is specified anywhere
in the range 68% to 100%. The results are even more dramatic when x is further
away from zero; for example, when x =0.4, the 50% CI is the empty set (see Figure

10.27), as is the 90% CI whenever x is sufficiently close to  or —4 (Figure 10.28).

In such cases, there is no chance that the confidence interval contains 4.

Despite these strange properties, the intervals are optimal, in the sense intended by
Neyman and Pearson; for example, the 50% intervals do indeed contain & 50% of the
time (in the long run). The reasons for this are as follows. When x is close to zero,
the 50% confidence intervals are very long and contain all, or nearly all, of the
parameter space; they, therefore, contain & all, or most, of the time and this is enough
to offset those occasions when the observation is far from zero and the interval is very

short or empty and contains & only rarely, or never.
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The Welch case came to be interpreted as showing that an average long-run success or
failure rate does not necessarily reveal the aspects of the experimental result that we
would regard as most relevant: if a ‘50%’ CI based on (say) x =0.2 fallsin a
category where the success rate is much higher than 50%, it may be this value, not the
*50% figure, that is more relevant to our interests. Clearly the same issue arises in

the present example.

An ancillary statistic.

In Welch’s case, these phenomena are connected to the existence of a universal

ancillary statistic (R); this is true in the gradient example as well. If we let A= X |,
then A~Uni[0,}) V& e(-2,2), and, since X is the MSS for this model and

parameter space, A is a function of the MSS and thus ancillary (in the restricted

sense) on the natural parameter space, (—2,2) . We can use the distribution of
X | A= a to find the conditional coverage of the conventional confidence intervals;

this may accord more closely with our intuition about the true meaning of such

intervals. Note that A is a continuous variable on [0,) and the distribution of

X | A=a is dichotomous (in the limit), since when A=a, X iseither +a.

The conditional distribution of X | A=a is shown below.

Table 10.10
X —-a +a
P,(X=x|A=a) | 1-a0) | (1+ab)
2 2

(Note that (1-a#) > (1+a#) when 8<0.)

This can also be written as: P,(X = x| A=|x[)= %2,
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Conditioning on A.

Since @ is bounded by -2 and 2, it follows that there are bounds on the above
probabilities for any given a (and also overall). For all values of &, the two

probabilities must both lie in the interval (3 —a,++a) and when a is small (x is
close to zero), both probabilities are close to § and to each other. In such a case, the

conditional p-value™ (for any null hypothesis) is close to 50% and there is no basis
for rejecting any of the possible values of &; this is consistent with our observation
that the likelihood function is close to flat in such a case. The greatest difference

between the two probabilities occurs as a — 4 and the two probabilities approach
1—-2 and 1+2 respectively; however, even in this case, we will only achieve a small
conditional p-value for some observation if 4, is close to 2 or -2; for example, if
a~+, one of the possible observations has a probability less than 5% only if
|6,1>1.8. Thus it is only when &, is an extreme value (in the context of the natural

parameter space for the model) that it is possible to observe any data that has a
conditional p-value sufficiently low to justify rejecting H in favour of some

alternative.

Is this consistent with the evidence based on the likelihood ratio value? For any given
hypothesised values 6, and 6,, the likelihood ratio corresponding to data, X, is

(1+6,x)
y (1+9;x)

where x € (—3,%) and sufficiently small values of y will count as evidence

against ¢, relative to ¢,. Consider (WLOG) the case 6, < 6, , so that the minimum

(2-4)
(2-0,

possible value of y is 75

If 6, (the null value) is fixed but we consider different

possible values of 6, satisfying 6, < ,, we can show that V6, <6,

0 <& < £5 <15 thus, for any x and any 6, <6, y can never be less than =2

It is possible to observe y that is significantly small, (say) y <+, for some &,, only

when &2 <L and thus 6, >1.75; again we find that, under this model, we can find

strong evidence against H (relative to some alternative), only when the value of 4, is

10 e. the p-value conditional on the observed value of a.
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itself extreme. This makes sense because the densities based on any two non-extreme
@ -values, are very similar. Despite this, we can find data with an arbitrarily low

unconditional (i.e. conventional) p-value for any value of &, because Y is a

continuous variable.

Example 10.8

Consider left-sided tests (i.e. €, < ,) of the null hypothesis 8 =0.2 with data

x =-0.47 . The following plot shows the density of X under H and some left-sided
alternatives. The data is marked on the x-axis. Note that, although the data is clearly

more consistent with the alternatives than with H, the difference is not great.

Figure 10.29

Gradient Model: Densities of x when theta=0.2
(black) and for various other theta<0.2.

f(x)

~ ¢

7 -0.25 0.00 0.25 0.50

The conventional p-value of this data is F, , ,,(-0.47) = 2.7%, which is significant.

On the other hand, for all left-sided alternative hypotheses, the likelihood ratio of the
data x =-0.47 isin the range (0.467, 1). Thus the evidence against H (relative to any

6, < 8,) is never much more than that which we get from observing a single coin toss

resulting in a head, in the paradigm case. Does conditioning on the ancillary statistic,

A=| X |, improve the inference?

The observed value of A is a=[-0.47|=0.47. Conditional upon this value, X has

the following distribution if =0.2.
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Table 10.11
X -0.47 | +0.47

B.(X =x| A=047) | 0453 [ 0.547

Thus the conditional p-value of the data, under this hypothesis, is 45.3% in contrast to
the p-value of 2.7%. The conditional p-value is much more consistent with the range
of likelihood ratios.

Example 10.9

Although most of the densities consistent with this model are similar to each other (as
a result of the model constraints), it is possible to observe strong evidence with
respect to the extreme case hypotheses, & —» -2 and 8 — 2. For instance, using the
data x =-0.47, from the previous example, we find that the likelihood ratio for
comparing H: 8 =1.999999 with K: 8 =-1.999999 is small and has the same

significance as the outcome ‘5 heads’ in the coin toss example, that is,

LR(-0.47) = {5 = 2

(1-0470,) — 3234

Figure 10.30

Densities of X under H:theta=1.999999 and
K:theta=-1.999999. Data=-0.47.

f(x) N

~ 06=1.999999

> N
0=-1.999999 "\

~
~
AN

T
7 -0.25 0.00 0.25 0.50

¢

We use the conditional distribution of X | A=0.47, under H, to find the conditional

p-value, as follows.
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Table 10.12
X -0.47 +0.47

P (X =x|A=047) | 0.030000 | 0.9700000
2-10° ’

Thus the conditional p-value of x =-0.47, for testing H: 8 =1.999999 against
K:6=-1.999999, is 3% and significant. (The p-value is 0.09%.)

The conditional coverage of the conventional confidence intervals.

We have noted that the optimal 50% Neyman-Pearson confidence intervals for @ are
very varied in width, even including intervals that cover all or none of the values in
the parameter space (-2,2). We may examine the features of these confidence

intervals by conditioning on the observed value of A= X |. This can be done with no

loss of information since A has the same distribution for all 4.

Consider the case where we observe A=0.1. This value is associated with x being
either 0.1 or 0.1, both of which produce a 50% CI that is relatively wide:
(-2.00,1.25) and (—1.25,2.00) respectively (in a parameter space of (-2,2)).
Intuitively we tend to think that the real coverage of such intervals is more than 50%.
Suppose we were to simulate a large number of samples (from the model and 9),
producing a CI from each sample, and then observing the long-run proportion of
instances where the CI contains @. This proportion is the coverage of the Cl
procedure; in many well-known cases, this value is common to all 4. When we look
for the conditional coverage, we consider data arising from the conditional
distribution of X | A instead of from the unconditional distribution of X . If a=0.1,
all of the confidence intervals that are produced will be one or other of the two
intervals: (—2.00,1.25) and (—1.25,2.00) . Since values in the range (—1.25,+1.25)
occur in both of these intervals, any 6 between —1.25 and +1.25 is contained in all the
intervals that can be produced from data consistent with a =0.1; thus, the conditional
coverage for these values of @ is 100%. Values of &€ between —2.00 and -1.25 are

only contained in confidence intervals produced from x =-0.1, and the proportion of
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the samples where x =-0.1 depends on &, thus the coverage is itself a function of &;

the same applies to values of & between +1.25 and +2.00.

Figure 10.31

Conditional coverage of the conventional
50% CI for theta, given a=0.1.
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It is clear that the figure ‘50%’ does not well describe the reliability of this method
since, V&, the conditional coverage > 50%. (It is the average coverage over a that is
50%, not the average over &, so this is no contradiction.) We can compare this with

one of the short 50% confidence intervals.

When a =0.35, the intervals associated with the two possible values of x (-0.35 and
0.35) are very short: (-2.00,-1.57) and (1.57,2.00) respectively. If

—-1.57 < # <1.57, then the coverage of &, by the confidence intervals, is 0%, since
neither of the intervals contains any of these values. On the other hand, the more
extreme values of @ are covered more than 50% of the time. That s, if | @] is close
to two, a high proportion of the intervals will contain @, if not, none of them will.
Since we do not know &, we cannot really use the conditional coverage results (and,
if we did know @, we would not need intervals), but, they do serve to show how

unsatisfactory the conventional intervals are.
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Figure 10.32

Conditional coverage of the conventional 50%
Cl for theta, given a=0.35.
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When a is sufficiently large, both of the intervals that can be produced are empty and
thus the conventional 50% method has a conditional coverage of zero for all possible
6. While there is a sense in which it is obvious that the empty intervals and whole
parameter space intervals have a ‘confidence’ of zero and 100%, rather than 50%, we
have shown that these values can be derived as the conditional coverage rates of the
conventional intervals. The fact that these values accord with our intuition provides
support for the view that conditioning brings us closer to a realistic interpretation of
the data.

Conditioning on the DDF statistic.

In the previous sections, we conditioned on the ancillary statistic A=| X |, which has
the same distribution for all 8 € (-2,2). In our discussion of the Welch example, we
showed that the ancillary statistic, R, which has the same distribution V8 e R,
should not be used for tests of two simple hypotheses because it is not a function of
the MSS for any binary parameter space (BPS); conditioning upon it breaches the SP
and produces nonsensical results. We also showed that, for each pair of hypothesised
values {6,,0,}, there exists a statistic ( A;) that is ancillary on the BPS and can be
used to get effective conditional results and we used these statistics to derive a

superior conditional confidence interval. In the present example, we have found that
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conditioning upon A=| X | seems to produce results that are much better than the

unconditional Neyman-Pearson results. Nevertheless, we must remember that
conditioning upon the range, R, is still regarded as the right approach to take, in the
Welch case. Does A, in the gradient example, have the same shortcomings as R in
the Welch case? How well does it work for tests of two simple hypotheses; is it a
function of the MSS for any BPS; and how does it compare with the exhaustive DDF

statistics?

Since, V6,,6,, Y =LR(X;6,,6,) = {453 is acontinuous variable, it follows that we
can apply the theory of Chapter 9 to this model. For any BPS, {6,,6,}, we can

identify the ancillary DDF statistic, D(y), which is ancillary in the restricted sense,

(i.e. itis a function of Y ), and partitions the sample space of Y exhaustively. An
ancillary statistic defined over a larger parameter space, often lacks one or both of

these features, however, in this case, the statistic A=| X | partitions the sample space

of X into subsets of two elements (x & —x), except that x =0 is in a subset by

itself. Since (in this model) y is always a one-to-one function of x, A must partition
the sample space of Y similarly. Also LR(x=0)=1, V4,6,, thus A isan

exhaustive ancillary statistic on every BPS. In order to compare A with the various

D(Y) statistics, we derive the details of those variables.

Forall 6, 6, and vy,

D(y)=F, (y)-F, (y),
where F(:) is the distribution function of Y = LR(X;8,,6,). Using the relationship
between Y and X , and the known distribution function of X , we can derive the

following:

(y-1°

D(y)=%|¢91—¢92 |'{%_(0 ) y)z
1~ 02

}, vY,6,,0,.

For fixed 6, and 6, this depends on y only through the expression D(y) = (-b°

(’91—92)/)2 !

which is a one-to-one function of D(Y) and thus an equivalent ancillary statistic.
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D and D both partition the sample space of Y into subsets of the form {y, 7(y)}

where D(y) =D(z(y)). Itis straightforward to show that the pairing function is:

)= {(6,+6,)y-26}

"= Goy-6+0)

.. - - [(1+ 2]
(This is the same for any hypothesis pair such that =(q, since z(y)= [quq&m , thus

all scenarios with the same value of Zl—z are in the same E. C. inference class.)

We want to compare the partition produced by D with the equally fine partition

produced by the exhaustive ancillary statistic, A=| X |. A pairs x with —x; what

does D pair x with?

Since y is a one-to-one function of x, we can invert this function to find x as a

function of y, hence:

1+6,x (y-1)
y=LR(x)= (1+91X)<:>x @0

Thus D(y) = (9(1{;1);)2 = x?, but this is also equal to (—x)?, and hence'! it follows that

7z(y) = LR(-x), and pairing y with z(y) is equivalent to pairing x with —x.

We have shown that, regardless of the values of ¢, and 6,, A is always a one-to-one

function' of D(y;6,,6,) (and of D(y;6,,6,)) and partitions the sample space the
same way. Thus A is equivalent to each and every one of the DDF statistics

({6,,6,} € R?). This is possible because y is a function of 6, and 6, as is

D(y; 6,,6,); it so happens that, in this case, the appearance of 6, and &, (along with
x) in the formula for y, and the appearance of &, and 6, in the function D(y;é,,6,),
act to exactly cancel each other out so that D(y;#,,6,) is a function of x alone,

v é,6,. While we have found that it is usually more helpful to structure a test in

' This reasoning is dependent on the fact that Y is a one-to-one function of X which we know to be

the case.
12 Not the same one-to-one function.
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terms of the likelihood ratio, y, this is a case where the natural variable describes the

same results more simply. (However there has to be serendipity in identifying A as
an ancillary statistic, whereas the DDF algorithm produces that ancillary statistic

automatically.)

This equivalence of ancillary statistics makes another feature of A=| X | evident; we
noted earlier that A is a function of the MSS for 6 € (-2,2), which is X ; however, it
is now clear that, for any binary parameter space {6,,6,} — (-2,2)*, A isalso a
function of the MSS on that binary parameter space (i.e. Y ). Thus A=/ X | isan
ancillary statistic, in the restricted sense, on all possible binary parameter spaces, as

well as on the natural parameter space, and is equivalent to the statistic D(y;4,,6,),

forall 6, and 6,.

Since we can use A in place of the DDF statistic and A is function of X alone and

the conditional distribution of X | A=a (under H) depends only on x and &, , we can

formulate the conditional p-value (which we can now call the cp-value since it is
based on the DDF statistic) for the left (6, < &,) and right-sided (6, > 6,) cases

without specifying the exact value of &,. Thus:

(1+6,x)
Right-sided cp-valug(x) =< 2 ' x>0
100%, x<0.
i 100%, x>0
Left-sided cp-value(x) = Sy x<0.

Although these look similar to typical p-values, they are substantially different
because (like all cp-values based on DDF statistics) they assign to all data with a
likelihood ratio of more than one, a cp-value of 100%. The cp-value’s insensitivity to

the exact value of 6, reflects the fact that, when we change 6, to (say) 6, + ¢, then
(as long as vy is still on the same side of one) the change in y (from a function of
(x,8,,86,) to the same function of (x,6,,6, +¢) ) is cancelled out by the change in the

cp-value (from a function of (y,4,,6,) to the same function of (y,4,,6, +¢)). Any
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method that breaches the likelihood principle, as ECI does, may be insensitive to the
exact value of K because insensitive to the exact value of the LR. For given data and
null hypothesis, changing K will generally change the likelihood ratio of the data but,
in many cases (such as the present one), it also moves us from one inference class to

another. Because this changes cp(y) as a function of y, it is possible for the cp-
value to remain the same even though y has changed. The very nice results that we

found for the Normal location model arise because all the possible tests are in the

same inference class and, hence, changing K and y inevitably changes cp(y) .

Conditional and unconditional p-values.

In log-symmetric models, the conventional p-value is always less than, and therefore

more significant than, the cp-value; this is a corollary of the fact that cp(y) is an
increasing function of y <1. By contrast, we find that the gradient model, applied to
certain binary parameter spaces, presents us with cases where cp(y) is a decreasing
function of y (y <1) and hence cp(y) < p(y) for some y ; this does not, however,

result in instances where the conditional inference produces a significant result and

the unconditional inference does not.

The general formula for the cp-value obtained by conditioning on the observed value

of D(Y) is:

)= y(z(y)-1)
(z(y)-y)

where y is the observed likelihood ratio and 7 (-) is the pairing function defined by

cp(y ,y<1

D(z(y)) = D(y). Thus, for the gradient model:

_ (91 —92)y
PO 200y

It follows that - cp(y) <0 if and only if 6,(6,—6,) <0, and is otherwise positive.
Note also that 4cp(y) =0, and the cp-value is constant, if and only if 8, =0; in that

dy

case 7(y) =55 and cp(y) =50% for y <1 exactly as in the Exponential case with
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q=%. Itis not hard to show that this 7z(y) is the only pairing function that can

produce a constant cp-value.

p(y) can only be greater than cp(y) if the latter is a decreasing function of y on
some interval in (0,1). For the Gradient model, the function cp(y) has no turning
points in the interval (0,1), thus, if cp(y) is decreasing anywhere in (0,1), itis
decreasing everywhere in (0,1). Since cp(y) > 50% as y —1 (see 89.5), it follows

that cp(y) >50% wherever p(y)>cp(y), thus neither type of p-value is significant.

The following plot highlights those points in the (6,,0,) -plane where cp(y) is a

decreasing function of y <1.

Figure 10.33

Values of (thetal, theta2) for which cp(y) is decreasing iny.

. >

02 >

We will look at a particular instance where the cp-value decreases as the likelihood
ratio increases.

Example 10.10

Consider testing H: # =1.1 versus K: 8 =1.8 so that (€,6,) lies in the highlighted

region of the above plot.

The following plot shows the relationship between x and y = LR(x), for this test.
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Figure 10.34

We note that y is a decreasing function of x (so this is a right-sided test, in terms of
x) and that y is less than one, providing some evidence against H, only when x> 0.
Also the likelihood ratio is always greater than 0.816 = 3 — it is not much less than

one for any value of x. This shows (as does the plot below) that the two distributions

are very similar to each other where x>0.

Consider the two observations x, =0.03 and x, =0.48; these values are at opposite

extremes among the positive values of x.

Figure 10.35
Densities of X under H and K.
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The two values are marked on the above plot showing the densities of X under the
two hypotheses. Since this is a right-sided test, the conventional p-value of each point
is the area to the right of the point under the null density. Although x =0.48 is very
large in terms of the possible values of x, it does not appear to provide strong
evidence against H relative to K. The likelihood ratios, p-values and cp-values of

these observations are shown below.

Table 10.13

X y=LR(x) | p(y) | cp(y)

0.03 | 0.98=:% | 60.70% | 51.65%

048 | 0.82= |3.08% | 76.40%

Both of the likelihood ratios are very close to one, indicating that the evidence against
H, from both observations, is extremely weak. Counter-intuitively, the cp-value is
higher when the likelihood ratio is lower, but, despite this anomaly, it is clear that the
cp-values give a much more accurate idea of the significance of the data than the p-
values. In particular, the observation x =0.48, which has a LR only slightly less than
one, has a significant p-value of 3.08% whereas the cp-value is 76.40% indicating

insignificant evidence against H.

To find out what happens when n>1, we simulated N = 2500 sets of data, with

n =20 observations each, under both H (6 =1.1) and K (8 =1.8). From this we were
able to obtain likelihood ratio values and, hence, the empirical distribution functions
of Y under H and K, and the empirical DDF statistic. The results indicated that,
when n =20, the cp(y) function is increasing in y, thus, it seems that (as in the
Exponential case) the anomalous relationship between y and cp(y) disappears when

the sample is larger.
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Conditional confidence intervals.

Since we know how to use the data, x, to test all possible pairs of hypotheses, we can
derive a conditional confidence interval for & from x. The & -level conditional
confidence interval (CCI) contains all and only those values of & that would not be
rejected (as the null value) in favour of any alternative in (—2,2) at a conditional
significance level less than or equal to & . Since A=| X | is the exhaustive ancillary
statistic, equivalent to the DDF statistic, for each and every binary parameter space,
we can derive the conditional confidence intervals in terms of x and a rather than in

terms of y and z(y).

The result of any test of H: & = &, can be found from the cp-value, below.

(+6x) 0

Right-sided cp-value(x)=] 2 '
1, x<0.
: 1, x>0
Left-sided cp-value(x) =1 .. <o

The value of a = x| does not depend on the hypotheses in question. Note that
(V6,0,) cp-value(x) >+ —a forall x, since —2< 6, <2. It follows that & ** must
either be zero or be greater than 1 —a, since for no test does any value of x yield a
cp-value in the range (0,5—a]. When & =0, zero is the common conditional
significance level of all the tests (i.e. for all (6,,0,) € (=2,2)%) and thus the CCl is

based on tests that all have the same (conditional) significance level, just as
conventional confidence intervals are usually based on tests that all have the same
unconditional level. Note that most of the values of a €[0,1) require us to use & =0

since £ —a is unreasonably large for a significance level: £ —a <5% only when

a>0.45.

Pa= max (6,0,
(6.0;)e(-2,2)
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From the above formula for cp-value, we can easily derive the & -level conditional

confidence interval for @ as follows.

(22 2), x>0

a l

(-2, &2y x<0.

a

Forany @ € (3—a,1), CCI(x) ={

For & =0, CCI(x)=(-2,2), forall x.

When x=0, cp-value(x) =100% (V& & ;) and hence @ <1= & =0 and the CCl is

the whole parameter space. When we use & =0, we are entitled to describe (-2,2)

as the 100% CCI for @, since zero is the common (conditional) significance level of
all the tests on which the CCI is based and 100% is clearly the coverage of the
interval. No other achievable value of & produces this interval, whereas the

conventional approach produces (—2,2) as the 100(1— )% CI (based on a given x)

for a wide range of « -values (not just  =0).

Only values of a that are close to + allow us to exclude any part of the parameter

space from the CCI with small . This is consistent with the fact that non-extreme x
are reasonably consistent with all the ¢ values. Thusif a=0.3 (x=-0.30r 0.3),

+—a=20% and we cannot use any a < 20% except & =0 which gives the 100%

conditional confidence interval (-2,2).

If a=0.46 (x=-0.46 or 0.46) then 3 —a=4% and we may use (for instance)

a =5% to obtain the following non-trivial CCl:

(~1.9565,2.00), if x =0.46
(~2.00,1.9565), if x =—0.46.

More generally, for any a > 0.45, there is a valid CCI at the 5% level given by:
09 .2), x=a

a

(-2,%8), x=-a.
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The width of this interval is 2+22 which tends to a minimum of 3.8 as a— 3. Thus

even the most extreme data can only exclude a small range of &-values with any

confidence. This is consistent with the nature of the model.

Summary.

For the Gradient model, the DDF statistic for any binary parameter space, in the
natural space (-2,2), is equivalent to the universal ancillary statistic A=| X |, which
can thus be used to produce conditional tests and confidence intervals. The
conventional ‘optimal’ approach produces confidence intervals and test results that
are intuitively unsatisfactory. We can get a formal account of the flaws in the
conventional approach by considering the conditional distributions of X | A=a, in
preference to the unconditional distribution of X , (for example, the conditional
coverage of a ‘long’ 50% confidence interval is greater than 50%, V&). The
inferences obtained by conditioning on A are more consistent with our understanding
of the model, which operates under considerable restrictions not reflected in the
conventional results. This model produces scenarios that show the superiority of the
conditional approach much more clearly than those produced by Welch’s Uniform

example.

10.6 Tests on general Normal hypotheses.

Let X ~ N(u,o?) and consider two hypothesised values of the two-dimensional
parameter of interest 8 = (1,0%)",i.e. H:0=6, = (1,67)  and K:0 =0, = (u,,07)" .
Each hypothesis specifies both the mean and variance of X . If 67 = o7, we can view

o’ as known theoretically and use the log-symmetric structure, discussed in Chapter

8, to test hypotheses about the mean. When the variances differ, Iny is a quadratic

function** of x and this can be used to derive the distribution functions of Y .

“Iny =ax’+bx+c, where: a =4 (&%), b= (%4 %) and c= |n(g—j)—%(”—f—g—§§ .

of
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Let
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Note that o, <o, =>m>0 and y €(0,e™), while o, >0, >m<0 and y e (e", ).

2,i=1
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Example 10.11.

Given that X ~ N(u, o), the null hypothesis (H) states that (x,5°)" =(20,4) and

the alternative hypothesis (K) that (x,6°)" = (37,25).

Figure 10.36

Densities of X under H [N(20,4)] and K [N(37,25)].
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When the variances are different, y = LR(x) is no longer a one-to-one function of x,

and the conventional p-value is (in terms of y):

P(Y) =R (Y <y) =R, (X <x(¥))+ Py (X >x,(y)),
where x,(y) and x,(y) are the roots of the equation y = LR(x) (shown below).

Figure 10.37

Plot of y=LR(x) versus x.
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When g4 =20, 0,=2, u, =37, 0,=5, ye(0,2433.88). The DDF statistic is shown

below for values of y in (107,10).

Figure 10.38
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For given values of y we can find the corresponding z(y) to any given level of

accuracy, and hence the cp-values. For six values of y we have derived p(y) and

cp(y) -
Table 10.14
y=LR(x) [01=4 03=; 05=1 08=& 12=4 9.94=;
X, (Y) 6.95 7.52 7.77 8.02 8.25 9.52
X, (y) 26.55 26.00 25.75 25.50 25.28 24.00
z(y) 4.9 2.6 18 1.2 * *

0(y) 0.05% 0.15% 0.20% 0.30% 0.41% 2.28%

8.13% 20.87%  30.77%  40.00%  100% 100%

As on some former occasions, we note that the conventional approach produces

highly significant results even when the likelihood ratio is greater than one and the

data has a higher likelihood under H than under K. Looking in more detail at the data

represented by the last column of the table, we see that, when we observe x =24, the

p-value is 2.28% but the data is surely more consistent with H than with K (see

below).

Figure 10.39

Observed value x=24 shown with the
densities of X under H and K. LR(24)=10.
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10.7 Conjectures on the asymptotic properties of exhaustive

conditional inference.

Consider a random sample™ X = X,,..., X providing evidence about the sole

unknown parameter, 8. In some cases, such as the Exponential, we have seen that,
when n is large, the cp-functions, cp(-), produced for different scenarios are very
similar to each other, although they differ dramatically when n=1. This raises the

possibility that there may exist a reasonably general ECI in the limitas n —o. The
fact that the range of Y = LR(X) approaches R", in all cases, as n — oo, lends some

support to this conjecture; it is only in cases where the range is severely restricted that

we have seen the ECI in conflict with the LR, and with the ECI for other scenarios.

If convergence of the cp-function to the same limit occurs across a large number of
models, then there exists a comprehensive asymptotic EC inference-class, and it
follows that exhaustive conditional inference is (to a large degree) asymptotically
consistent with likelihood theory. Examining the asymptotic behaviour of ECI in any
depth is beyond the scope of this work; in this section we consider briefly the possible

implications of the asymptotic Normality of many maximum likelihood estimators.

Under reasonably common regularity conditions'®, @ has a unique maximum

likelihood estimator, &, that is asymptotically Normal with a mean of & and variance

equal to the minimum variance (Cramér-Rao) bound. That is, as n — o, the

distribution of & — N (6,%2) , where d(6) = -[E, ZL(X;0)}] ™ and L(x;6) is the
common likelihood function of the X variables. Thus, in the limit, any hypothesis of
the form 6 =" entails 6 ~ N (9‘,@) , and any two simple hypotheses specifying 0
give rise to the type of scenario discussed in the previous section, where each
hypothesis defines a different mean and variance for a Normal variable, i.e. 0 plays
the role of X in §10.6. & is asymptotically sufficient and hence

LR(é) —Y(=LR(X)) as n— 0. If n is large and the regularity conditions are met,

'3 Independent and identically distributed variables,
16 See Kendall & Stuart, pp. 39-43.
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it is reasonable to use the asymptotic distribution of 6 to perform an ECI, in the

manner illustrated in the previous section.

Consider the model X ~ N(u,o?) with two simple hypotheses, as in §10.6, but now

suppose that &” = dT For each value of n, the scenario is completely defined giving

rise to a pairing function and hence a cp-function. We have not derived the form of

the pairing function for this type of scenario — the particular values of z(y) used to
produce the cp-values in Example 10.11 were derived numerically — nevertheless a

pairing function exists. If we let n — o but hold 4, #,, d, and d, constant, what

happens to the pairing function? Does it converge and, if so, does the limit depend on

any of x4, u,, d, and d,, or is there a general limit that applies regardless of the

values taken by these variables? If it converges, then the limit of the pairing function
also applies to any case where the maximum likelihood estimator of & has the
necessary asymptotic characteristics. For example, if the limit is independent of

4, i, d, and d,, it will apply to any case where the MLE of & is asymptotically
Normal; if the limit depends on (say) d, and d,, then it will apply to any case where
the MLE is asymptotically Normal and d(4,) =d, and d(¢,) =d,. The former
possibility is the more interesting since it would imply that, whenever n is large

enough, the ECI on any & where 6 is asymptotically Normal is the same and, thus,

there exists a huge asymptotic E. C. inference class.

The Normal location case, X, ~ N(u,o°) (o known), is a particular case of the
above type, where the limiting properties are completely known since

O=X~N (,u,"Tz). The sufficiency is exact for all n, and the model is log-symmetric
forall n. Thus =, (y) isthe same for all n and trivially constitutes the limit, i.e.

z, (y)=y*. Thus, we know that whenever d, =d,, the pairing functions are
independent of the values z, w, and d (for all n as well as in the limit). If 7 (y)

converges for the more general Normal case, and the limit to which it converges is

independent of 14, 4,, d, and d,, then this unique limit must be y™, since it is
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applicable to the Normal location case. We consider two examples of the general

Normal model to see whether these conjectures have any plausibility.

Example 10.12

Consider the particular cases where X ~ N(x,o?) and g, =20, u, =37, d, =16,

and d, =100 (thus o} = and o7 =12). In Example 10.11, we performed an ECI

n
for this case when n=4. We want to see what happens to the pairing function as n

increases.

As n— oo, D(y) —1, for all finite y; this makes it difficult to find 7, (y)
numerically, for large n, since we need to evaluate D(y) to a high level of accuracy
in order to distinguish between D(y,) and D(y,) when both are very close to one.

For this reason, we have derived the pairing functions only for the cases n=1, n=4

and n=20. The following plot shows the pairing functions for these three cases

compared with the log-symmetric pairing function z(y)=y™.

Figure 10.40

Plot of the pairing functions for n=1, 4, and 20 and
the log-symmetric pairing function, 1/y.

It seems likely that the pairing function converges and y™ is a possible limit — more

than this we cannot say.
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Example 10.13

Now, consider the cases where X ~ N(x,0?) and g, =50, u, =40, d, =25, and
d, =81. (No specific examples can establish a general result, but we have attempted
to pick two examples with little in common. Thus this example has 4 > x4, and the

smaller variance associated with the larger mean, in contrast to the previous case.)

Figure 10.41

Plot of the pairing functions for n=1, 4, 20, and
40, and the log-symmetric pairing function, 1/y.
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As in the previous case, convergence seems likely and the log-symmetric pairing
function is a possible limit. The following plot shows the two sets of pairing
functions together. There is nothing in this plot to indicate that the two examples

produce different limits.

Figure 10.42

Pairing functions for various n for
Examples 10.12 (dots) and 10.13.
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On the basis of this very limited investigation, we may conjecture that the pairing

functions for the general Normal model converge to the same limit in all cases. If this

were shown to be true, it would follow that the limitis y™* and cp(y) » Ty as

n—o (Vy<1). Itwould also follow that this asymptotic ECI would be applicable
to a wide range of non-Normal data whenever n is sufficiently large. Intuitively we
would expect our inferences to improve with increased sample sizes and the above
relationship between the cp-function and the likelihood ratio certainly ensures that the
cp-values make sense from a likelihood point of view. By comparison, we have
frequently noted that p(y) — 0 as n — oo, for all finite y. This result is consistent
across models but is patently ridiculous since it means that any likelihood ratio, no
matter how large, is interpreted as significant evidence against H relative to K once

the sample size is large enough.
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