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Chapter 10.  Conditioning on the DDF statistic in 
cases that are not log-symmetric. 
 

In this chapter we look at a number of different scenarios and compare the results 

produced by E. C. inference with those from conventional inference.   

 

We are able to state the general form1 of the DDF statistic for tests on the Exponential 

mean, two Gamma parameters, the variance of a Normal with known mean, and one 

of the Weibull parameters.  Although we can always find the value of 0( )yπ  for any 

particular 0y , in most of these cases we cannot find ( )π ⋅  analytically.  The exceptions 

to this are several scenarios involving the exponential model where we can find ( )π ⋅  

by solving quadratic and cubic equations; in these cases we are able to discuss the 

general nature of the cp-function.  We identify a type of scenario where E. C. 

inference breaks down in the sense that it produces significantly small cp-values for 

non-significant likelihood ratios, and find that taking sufficiently large samples can 

solve this problem.  Finally, we examine an artificial model (the Gradient model) 

designed to illuminate a number of the issues that arose in Welch’s Uniform case.  In 

that case, both of the rival methods breached the sufficiency principle whereas, in our 

example, they do not, this example provides a better basis for comparing the 

conditional and unconditional approaches. 

 

10.1 Tests on the variance of a Normal population. 

 

Let 1, , nX X…  be independent and identically distributed random variables with a 

2( , )N µ σ  distribution where µ  is known and 2σ  is the unknown parameter of 

interest.  Consider hypotheses of the form H: 2 2
1σ σ=  versus K: 2 2

2σ σ= , 

( 2 2
1 2,σ σ +∈\ ).  Let 

2
2 2

21 1
0q σ σ

σ σ
= = >  and 2( ) 0i

i
V X µ= − ≥∑ .  

 

                                                 
1 That is, the form that can be applied to any particular pair of hypotheses. 
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Then 
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y  is a one-to-one function of v , increasing when 2 1σ σ<  ( 1q < ) and decreasing 

when 2 1σ σ>  ( 1q > ).  Also, 1 ( , )nq y q< ⇒ ∈ ∞  and 1 (0, )nq y q> ⇒ ∈ . 

 

We can use the fact that 2
V
σ

 has the 2
nχ  distribution to find the DDF statistic: 

 
2

2 2

2(ln ln ) 2(ln ln )( )
(1 ) (1 )
y n q y n q qD y F F

q q
⎛ ⎞⎛ ⎞− −

= − ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠
, 

where F  is the distribution function of a 2
nχ  random variable. 

 

Example 10.1 

 

Let 1 20, ,X X…  be a random sample from a 2(0, )N σ  population and suppose we 

want to test the null hypothesis 2 1σ =  against the alternative 2 2σ =  (i.e. 2q = ). 

The densities of 
20

2

1
i

i
V X

=

= ∑  under H and K are shown below. 

Figure 10.1 
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The LR, 10(0, 2 ) (0,1024)y ∈ ≡ .  Suppose that we observe data such that 

20
2

1
32i

i
v x

=

= =∑  (shown on the above plot).  From the plot, it is apparent that the 

likelihood ratio of this data is not particularly small: 10 8 1
2.92 0.3435y e−= = =  

indicating weak evidence against H.  However the conventional p-value is 

( 32) 4.33%HP V > =  usually interpreted as strong evidence against H relative to K.  

Inserting 2q = , 20n =  and ln ln(0.3435)y =  into the formula for ( )D y , we find 

(0.3435) 0.6733D = . We can numerically derive the fact that 0.6733 (2.5468)D=   

(see below). 

 

Figure 10.2 
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Thus (0.3435) 2.5468π =  and hence 0.3435(2.5468 1)
(2.5468 0.3435)(0.3435) 24.12%cp −

−= = , leading us 

to a conclusion that is consistent with the observed value of y  i.e. the data does not 

constitute strong evidence against H relative to K. 

 

Large samples. 

 

Right-sided tests on the Normal variance (i.e. 2 1σ σ> ) have likelihood ratios in the 

range (0, )nq .  Thus the range of y -values that are greater than one is very limited 
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whenever n  is small and the hypothesised values are close together (recall 2

1
q σ

σ= ).  

For example, suppose that 2 11.05σ σ= ×  and 2n = , then (0,1.1025)y ∈  and, for all 

1y < , the value of ( )yπ  is bounded above by a value that is close to one (i.e. 1.1025).  

Since [ ( ) 1]
[ ( ) ]( ) y y

y ycp y π
π

−
−=  is increasing in ( )yπ  for any fixed y , even the cp-values of 

moderately large y  will tend to be low in such cases.  For instance, the observation 

1
4y =  is not significant evidence against H relative to K (from a likelihood point of 

view), but 1
4( ) 1.1025π <  and hence 0.25(0.1025)1

4 0.8525( ) 3%cp < = .  This is a significant 

value, but not as significant us the unconditional p-value which is 5(1.2 10 )%−× . 

 

As n  increases so does the bound, ( 1)nq > .  To see what affect this has on the test 

result, we find 1
4( )π  and hence 1

4( )cp  for various n  between 2 and 10000 when 

1.05q = ; we also show the conventional p-value of 1
4y =  in each case. 

 

Figure 10.3 
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For n  in the range 2 to 200, we note that both the cp-value of 1

4  and the p-value 

increase as n  increases although the p-value is a great deal smaller and is still less 

than 5% when 200n =  while the cp-value is greater than 10% for all 10n ≥ .  

However the more interesting result appears when we let the sample size increase to 

10000. 
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Figure 10.4 

 

1000 6000 11000

19.0

19.1

19.2

19.3

19.4

19.5

19.6

19.7

19.8

19.9

20.0

n

cp(1/4)

for 200<n<10000.
Variance model with q=1.05.  Plot of cp(1/4)

%

 

 

Figure 10.5 
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The cp-value of 1
4y =  for 200n >  shows the same pattern as for smaller n , 

increasing (slightly) as n  continues to increase.  But the p-value of 1
4y =  behaves 

quite differently: having achieved a maximum value (still less than 5%) at some n  

close to 200, it then declines steadily as n  increases further, until it is (again) 

indistinguishable from zero.  We can show why this happens. 
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Let F  be the distribution function of a 2
nχ  variable, then the conventional p-value is 

defined as: 

 2

2

( ) ( )

2 [ln ln ]1 .
(1 )

Hp y P Y y

q y n qF
q

= <

⎛ ⎞−
= − ⎜ ⎟−⎝ ⎠

 

 

 

When 1q >  and ny q< , 
2

2

2 [ln ln ]
(1 )

q y n q
q
−

→ ∞
−

 as n → ∞ , and hence 

lim ( ) 1 ( ) 0
n

p y F
→∞

= − ∞ = .   

 

Note that this is true for all finite values of y , no matter how large.  This is an 

example of the phenomenon that we discussed in Chapter 3 for the Normal location 

model.  As the sample size and, hence, the power of a test increase, the distributions 

under the two hypotheses become increasingly far apart with the result that we 

eventually obtain extremely small p-values even for data with a large likelihood ratio.  

By contrast, 1
4( )cp  appears to converge to some value 25%≤ , as n  increases2.  (Both 

( )cp y  and ( )p y  are bounded above by y  – this is true generally.) 

 

We have shown that, when 1.05q = , the poor quality of the conditional inference for 

small n  can be overcome by increasing the sample size, which does not have to be 

very large before we get reasonable conditional inferences from 1
4y = .  In 

comparison, the conventional inference deteriorates as n  increases and does not give 

an accurate interpretation of 1
4y =  for any n . 

 

                                                 
2 It is tempting to wonder if (1 )( ) 20%y

ycp y +→ = .  Note however that, although the distribution of 

V  tends to a Normal as n  increases, the limiting distribution is 2 4( , 2 )N n nσ σ  and the distributions 
under the two hypotheses have different variances as well as different means.  Thus we cannot, simply, 
use the log-symmetric case to show that the cp-value converges to this limit. 



 Chapter 10: Conditioning in cases that are not log-symmetric.  

 293

 

10.2 Tests on the mean of an Exponential population. 
 

Let ~ ( )X Expo θ  where ( )E Xθ = .  The density of X  is given by: 

 /1( ; ) ,  0,  0.x
Xf x e xθ

θθ θ−= > >  

 

Exponential distributions are widely used to model time-related variables such as the 

length of telephone calls and they play a prominent role in the Poisson Process. 

 

For any two hypotheses H: 1θ θ=  and K: 2θ θ= , the likelihood ratio statistic, based 

on a single observation, x , is: 

 
2

1 1 2

1

1 1

(1 )

( ) exp{ ( )}

exp{( ) },q
q

y LR x x

q x

θ
θ θ θ

θ
−

= = − −

= ⋅
 

where 2

1
0q θ

θ= > . y  is a one-to-one function of x , increasing when 2 1θ θ<  ( 1q < ) 

and decreasing when 2 1θ θ>  ( 1q > ).  When 1q < , ( , )y q∈ ∞  and when 1q > , 

(0, )y q∈ . 

 

 

The conventional p-value. 

 

For this model, the conventional p-value for testing two simple hypotheses is: 

 
1

1

/
2 1

/
2 1

1 ,   
p-value( )

,        .

x

x

e
x

e

θ

θ

θ θ

θ θ

−

−

⎧ − <⎪= ⎨
>⎪⎩

 

 

 

This can be re-written in terms of y  as: 

 
( 1)

( 1)

1 ( ) ,   1
( )

( ) ,        1.

q
q

q
q

y
q

y
q

q
p y

q

−

−

⎧ − <⎪= ⎨
⎪ >⎩
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The value cy  such that ( ) 5%cp y =  is the critical likelihood ratio for the conventional 

5% test – we reject H at 5% whenever we observe cy y≤ .  For our conclusions to be 

consistent with the standard interpretation of likelihood ratio, it must be the case that 

cy  is reasonably small (e.g. less than 1
8  or 1

16 ).  The following plots show the value of 

cy  for a wide range of values of 2

1
q θ

θ= . 

Figure 10.6 
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Figure 10.7 
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The smallest value of y  ever required to get a p-value of 5% is 1
7.6  when 0.0513q = . 

For other values of q , larger y -values – often greater than one – are sufficient to give 

a significant result.  Note that as 1q →  (from above or below) the value 1cy →  and 
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this is true for all significance levels, not only 5%; as the hypothesised values become 

closer together, it is possible to get (any) significant p-value for likelihood ratios that 

are close to one, that is, close to neutral evidence.  Also as 0q →  or q → ∞ , the 

critical likelihood ratio increases without bound, from which it follows that any value 

of y , no matter how large, will be significant (at any value of α , no matter how 

small) for some hypothesis test. 

 

Exhaustive conditional inference. 

 

The distribution function of Y  can be derived from that of X  to give the ancillary 

DDF statistic: 

 

1
( 1) ( 1)

1
( 1)

( )

1 .

q
q q

q

y yD y
q q

y y
q q

− −

−

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎧ ⎫
= −⎨ ⎬⎜ ⎟

⎝ ⎠ ⎩ ⎭

 

 

In general we cannot solve ( ) ( ( ))D y D yπ=  for ( )yπ  analytically, except for certain 

values of q  where ( )D y  is a polynomial with known solutions.  Note that the value 

of q  defines an inference class for both exhaustive conditional and conventional 

inferences.  The cp-value (or p-value) of any likelihood ratio, y , depends on 1θ  and 

2θ  only through q . 

 

Example 10.2 

 

Test H: 1θ θ=  against K: 12θ θ=  (for any 1θ ), i.e. 2q = . 

Hence 21 1
2 2 4 2( ) ( ){1 }y yD y y y= − = − +  ( (0, 2)y ∈ ) and the equation ( )D y a=  is: 

  

 

2

1 2 1

2 4 0

1 1 4  and 1 1 4 2
( ) 2 .

y y a

y a y a y
y yπ

− + =

⇒ = − − = + − = −
⇒ = −
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Since we have a general formula for the pairing function, we can also obtain one for 

the cp-value as a function of :y  

 
[(2 ) 1]

[(2 ) ] 2 ,   (0,1)
( )

100%,               (1, 2).

y y y
y y y

cp y
y

− −
− −⎧ = ∈⎪= ⎨

∈⎪⎩
 

 

This compares with the unconditional p-value, 
2

4( ) ,   (0,2)yp y y= ∈ . 

 

The following table compares the p-value and cp-value for various outcomes. 

 

Table 10.1 

(data)y LR=  Equivalent coin

toss result3. 

( )%cp y ( )%p y

1
64  hhhhhh 0.78% 0.006%

1
16  hhhh 3.125% 0.1% 

1
4  hh 12.5% 1.6% 

1
2  h 25% 6.25% 

1
1.6  * 31% 9.8% 

1
1.1  * 45% 20.7% 

 

The conventional p-values are small even where the likelihood ratio is moderately 

large and indicates that there is little evidence against H relative to K. 

 

 

We take the opportunity afforded by this case to illustrate the point we made in the 

log-symmetric case, namely, that the conventional p-value is the mean of a number of 

conditional probabilities only one of which (the cp-value) corresponds to the observed 

value of the DDF statistic (the particular ‘sub-experiment’ performed).  In this case, 

for any 0 (0,1)y ∈ , 
2
0

0 4( ) yp y =  and 0
0 2( ) ycp y = .  For convenience, we use an ancillary 

                                                 
3 For testing H: Coin is fair against K: Coin is double-headed. 
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statistic equivalent4 to the DDF statistic, i.e. 
1
2| 1| {1 4 ( )}A Y D y= − = − , and note that 

~ (0,1)A Uni , that is, ( ) 1,  (0,1)Af a a= ∈  (under both hypotheses). 

 

 

 

We will show that  

 
0 0

0

0

( ) ( )

( | ) ( )

[ ( | )].

H

H A
a

A H

p y P Y y

P Y y A a f a da

E P Y y A

= ≤

= ≤ = ⋅

= ≤

∫
G

G
 

 

First note that: 

 0
0

( 1 | ),   1
( | )

0,  otherwise.
H

H
P Y a A a a y

P Y y A a
⎧ = − = − ≤⎪≤ = = ⎨
⎪⎩

G
G

 

 

For example, suppose that 1
0 3y = .  If we condition on | 1| 0.8A Y= − = , we find that 

1
3( | |1 | 0.8) ( 0.2 | 0.8)H HP Y A Y P Y A≤ = − = = = =

G G
 since 0.2 is the only value less than 

1
3  consistent with 0.8A = .  On the other hand, 1

3( | 0.6)HP Y A≤ =
G

 must be zero since 

there is no value of y  less than 1
3  that is consistent with | 1| 0.6A Y= − = .   

 

By definition, ( 1 | ) (1 )HP Y a A a cp a= − = = −
G

 and hence: 

 
(1 )

02
0

0

,   1 1
( | )

0,       0 1 .

a

H

y a
P Y y A a

a y

−⎧ − ≤ <⎪≤ = = ⎨
< < −⎪⎩

G
 

Thus, 

 
0

0

2
0

0

11
(1 )

2
1 0

04

( | ) ( )

{ 1} {0 1}

( ).

H A
a

y
a

y

y

P Y y A a f a da

da da

p y

−
−

−

≤ = ⋅

= × + ×

= =

∫

∫ ∫

G

 

 
                                                 
4 That is, A  is a one-to-one function of ( )D Y , which catorgorises the values of y  the same way and 
produces the same ( )π ⋅  and ( )cp ⋅  functions. 
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The conventional p-value is the average (over a ) of the probabilities 

0( | )HP Y y A a≤ =
G

 and this average is used to interpret the significance of the 

observation, 0y , despite the fact that whenever we observe 0Y y= , we must also have 

observed 01A y= −  so that 0 0 0( | 1 ) ( )HP Y y A y cp y≤ = − =
G

 is the only one of these 

conditional probabilities that is relevant.   Note also how the zeros in the average pull 

the p-value down; these are associated with an increasingly large proportion of the 

distribution of A  (or the DDF statistic) when 0y  is small.  For example, when 1
0 4y = , 

0( | ) 0HP Y y A a≤ = =
G

 for all 3
4(0, )a ∈  and these values constitute 3

4  of the 

probability mass of A .  However, even when 0y  is not much less than one, the p-

value, as an average, is dominated by those probabilities associated with unobserved 

values of a  (and, in the case 2q = , all of these probabilities are less than 0( )cp y  

since ( )cp ⋅  is an increasing function). 

 

 

Example 10.3 

 

Test H: 1θ θ=  against K: 11.5θ θ=  (for any 1θ ), i.e. 1.5q = . 

 

Hence, 2 22 3 28 4
3 3 27 9( ) ( ) {1 }y yD y y y= − = − +  ( (0,1.5)y ∈ ). 

 

The equation ( )D y a=  can be solved to find: 

  

 

1
4( ) {3 2 3(3 2 )(2 1)},

{1 2 3(3 2 )(2 1)}
,   (0,1)

and hence ( ) {6 3 3(3 2 )(2 1)}
100%,                                         (1,1.5).

y y y y

y y y y
y

cp y y y y
y

π = − + − +

⎧ + − − +
∈⎪= − − − +⎨

⎪ ∈⎩

 

 

This compares with the unconditional p-value, 
38

27( ) ,   (0,1.5)yp y y= ∈ . 

 

The following table compares the p-value and cp-value for various outcomes. 
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 Table 10.2 

(data)y LR=  Equivalent coin

toss result. 

( )%cp y ( )%p y  

1
64  hhhhhh 0.53% 0.0001%

1
16  hhhh 2.17% 0.007% 

1
4  hh 9.55% 0.46% 

1
2  h 21.1% 3.7% 

1
1.6  * 27.6% 7.2% 

1
1.1  * 44% 22% 

 

Again we see that the conventional p-values are unreasonably small when there is not 

much evidence against H: even 1
2y =  returning a significant p-value.  We might 

consider that the cp-value of less than 10% for 1
4y =  is also too small and we will see 

that when q  is close to, but larger than, one, the cp-value tends to overstate the 

significance of the result, though not as badly as the p-value.  This will be further 

illustrated in the next example; in the section on Gamma distributions, we suggest a 

solution to this problem. 

 

 

Example 10.4 

 

Consider the case where 1.01q = , for example, a test of 20.0θ =  against 20.2θ = , 

based on a single observation.  In this case, E. C. inference breaks down as it did 

when we tested some hypotheses about the Normal variance using 1n = .   

 

Since (0,1.01)y ∈ , it follows that, for all 1y < , ( ) (1,1.01)yπ ∈  and hence 
0.01

(1.01 )0 ( ) y
ycp y −< < .  Thus 1

2( ) 1%cp < , seeming to indicate that a likelihood ratio of 

one half is significant evidence against H relative to K. This problem is insuperable as 

long as the hypothesised values are extremely close together ( 2 1θ θ> ) and the data 

involves a sample of size 1n = . The cp-value is based not only on the observed 

likelihood ratio, 0y , but also on an unobserved value, 0( )yπ  and, because of this, our 
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method is not consistent with the likelihood principle. There is, thus, the potential for 

situations, such as the present example, where our interpretations of y  and ( )cp y  are 

not in agreement, though this can never happen when 1y > .   (The conventional p-

value is far worse; in this case, 1
2( )p  is of the order of 2910 %− .) 

 

 

No small likelihood ratios. 

 

When 1q < , no data has a likelihood ratio less than q  since ( ,  )y q∈ ∞ .  If q  is not 

very small, it follows that no data has a likelihood ratio that constitutes significant 

evidence against H relative to K.  Any inference made in such circumstances should 

reflect this fact.  In this section, we consider the cases 1
2q =  and 2

3q =  for which we 

have complete analytic results. 

 

 

Example 10.5 

 

(a) Let 1
2q = . 

 

We are testing hypotheses of the form H: 1θ θ=  versus K: 1
12θ θ=  (for any 1θ ) and 

1
2( , )y ∈ ∞  which indicates that there is no observable data that constitutes evidence 

against H as strong as the evidence from a single head in the coin toss case.  

 

We already have the pairing function for the case where 2q = , i.e. 2 ( ) 2q y yπ = = − .  

In the present case the hypotheses are the opposite way around, so we can use the 

result given in §9.5 for finding the pairing function for the swapped hypotheses.  Thus 
1 11 1

2 2 1( ) { ( )} {2 } y
q y y yyπ π − −

= −= = − =  and it follows that 

  

 
[ ( ) 1] 1

[ ( ) ] 250%,   1
( )

100%,                1.

y y
y y y

cp y
y

π
π

−
−⎧ = < <⎪= ⎨

>⎪⎩
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The conventional p-value is: 1 1
2 2( ) 1 ,  ( , )yp y y= − ∀ ∈ ∞ .  When y  is relatively small 

(i.e. 1
2y →  from above) the p-value approaches zero, but the cp-value is never less 

than 50% which is consistent with the fact that there can never be strong evidence 

against H. 

 

 
 

(b) Let 2
3q = .   

 

The hypotheses are of the form H: 1θ θ=  versus K: 2
13θ θ=  (for any 1θ ) and 

2
3( , )y ∈ ∞ .  A likelihood ratio of two-thirds is such weak evidence that it cannot be 

characterised by the paradigm coin-tossing case that we have generally used. Instead 

consider the following scenario.   

 

There are two dice. Each of the dice is fair regarding each of its six faces but Die A 

has faces that are numbered {2, 2, 2,2,6,6}  and Die B has all six faces numbered ‘2’.  

One of the two dice is randomly selected (with a 50:50 probability5).  The chosen die 

is rolled repeatedly.  For testing HA: ‘The chosen die is Die A’ against HB: ‘The 

chosen die is Die B’, the outcome ‘ 2,2,2,...2
n

��	�
 ’ has a likelihood ratio of 2
3( )ny = .  

Thus the value 2
3y =  (which is the strongest evidence we can find against the null 

hypothesis in the Exponential case with 2
3q = ) is equivalent to the weight of evidence 

against HA obtained from a single roll of the die resulting in the outcome ‘2’.  This 

evidence is extremely weak and we can verify this by comparing the densities of Y  

under H and K when 2
3q = . 

 

 

 

 

                                                 
5 This probability does not affect the likelihood ratio and hence the evidence in the data.  However 
different prior probabilities are capable of biasing our perception of the meaning of the data, hence we 
stipulate these values. 
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Figure 10.8 
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Density functions of Y under H (solid line) and K.

 
For 1y < , the density under K is greater than that under H, but the two densities are 

so alike that no value of y  is much more consistent with K than with H.  However the 

conventional p-value of (say) 0.68y =  is 3.9%.  

 

 

We already have the pairing function for the case where 1.5q =  from which we can 

derive the pairing function for this case: 

 4( )
{3 2 3(3 2)(2 )}

yy
y y y

π =
− + − +

. 

Hence, for 2
3 1y< < , 

 
{ 2 3(3 2)(2 )}

( ) .
{6 3 3(3 2)(2 )}

y y y
cp y

y y y
+ − − +

=
− − − +

 

 

This compares with the conventional p-value: 2
4 2

39
( ) 1 ( ),  ( , )

y
p y y= − ∈ ∞ .  The 

following plot shows the conventional and conditional p-values as functions of y . 
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Figure 10.9 
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The first point to note is that ( )cp y  is a decreasing function6 of y .  This conflicts 

with the interpretation we have of the likelihood ratio as a measure of the evidence 

favouring H relative to K.  However, the conflict is real at a practical level only if we 

insist that ‘ 1 2( ) ( )cp y cp y< ’ must be interpreted as ‘ 1y  is stronger evidence against H 

relative to K than 2y ’ regardless of the actual cp-values, i.e. regardless of whether 

either of the values is at all significant.  Despite the fact that the cp-value is 

decreasing, the statements ‘50% ( ) 66.6%cp y< < ’ and ‘ 2
3 1y< < ’ are consistent to 

the extent that both imply that any evidence against H relative to K is extremely weak. 

 

Note also that for values of y  close to one, the cp-value is less than the p-value.  In 

all the other examples we have considered, the p-value has been smaller than the cp-

value and, therefore, sometimes significant when the cp-value is not.  This might have 

lead us to conjecture that it is always so.  However, this case and the gradient model 

(considered below) provide counter-examples to this conjecture.  It is true that in all 

these cases, neither the p-value nor the cp-value is remotely significant so we have no 

                                                 
6 It is impossible for the (unconditional) p-value to be a decreasing function of the likelihood ratio 
statistic, since the p-value is simply the (cumulative) distribution function, under the null hypothesis, of 
the likelihood ratio statistic at the point observed. However, when we condition on an ancillary 
statistic, we are no longer dealing with a single probability distribution. The distribution of |Y A a=  
is different (under any given hypothesis) for each value of a , and, when we use an EAS, any two 
distinct values of y  (<1) are associated with distinct values of a  and, hence, with distinct 

distributions.  If Y  is continuous and 1 2 1y y< < , it follows that 1( )P Y y<  is less than 

2( )P Y y< , but it does not follow that 
1 1( )aP Y y<  is necessarily less than 

2 2( )aP Y y<  when 
1aP  

and 
2aP  refer to different (conditional) distributions. 
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counter-example to a claim that it is not possible for the conditional test to yield a 

significant result when the unconditional test does not.  In fact, it can be shown that, 

in the gradient model, the cp-value is less than the p-value only when it is greater than 

50%, so that neither measure is significant.  The question of whether it is possible for 

the conditional test to deliver a significant result when the conventional test does not 

remains open: we have no instances of this happening but no proof that it cannot 

happen. 

 

Despite these oddities, the cp-values are consistent with likelihood ratio values in 

showing that no data constitutes significant evidence against H relative to K when 
2
3q = .  The conventional p-values, on the other hand, are significantly small (tending 

to zero) for y  close to 2
3 . 

 

 

Bounds on the cp-value for a range of Exponential cases. 

 

For any observed likelihood ratio, 0y , we can find 0( )cp y  numerically, but since we 

cannot find ( )π ⋅  and hence ( )cp ⋅  analytically (for more than a few values of q ), we 

cannot discover the general nature of the cp-functions.  The following bounds are 

useful in providing some extra information. 

 

The following general result compares the cp-value for the Exponential model 

( 0 1q< < ) with that in the log-symmetric case. 

 

Claim: When 1q < , ( ) /(1 )cp y y y> + . 

Proof. 

When 1q < , 
1

1( ) ( ) { 1}qy y
q q qD y −= − .  

 

For 1y < , let  

 1 11 1
1 1

1( ) ( ) ( )

( ) { 1} ( ) { 1}.q q

q q q

y y y y
q q q q

y D y D y
− −

− −

−∆ = −

= − − −
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Then ( ) ( )q q
d y y
dy

′∆ = ∆  can be written as: 

 
1

1 11
1 11( ) ( )( 1)(1 ).

(1 )

q q
q q

q
qy y y y

q

− +−
− −−′∆ = − −

−
 

 

 

Since 0 1y< <  and 1q < , all the components of this product are positive, and hence 

( ) 0q y′∆ >  for all such y  and q .  

 

Thus 1q∀ < ,  

 1
max ( ) (1) (1) (1) 0

( ) 0,  1.

q q q qy

q

y D D

y y
<

∆ < ∆ = − =

⇒ ∆ < ∀ <
 

 

 Hence 1y∀ < ,  

 

1

1

1

     D ( ) ( )

( ( )) ( )

( ) ,

q q

q q q

q

y D y

D y D y

y y

π

π

−

−

−

<

⇔ <

⇔ >

 

since ( )yπ  and 1y−  are both greater than one and the function ( )D ⋅  is decreasing in 

this range. 

 

Hence also, 

 
1

1

( ( ) 1) ( 1)( )
( ( ) ) ( ) 1

q
q

q

y y y y ycp y
y y y y y

π
π

−

−

− −
= > =

− − +
. 

 

From this it follows that, for all 1q < , /(1 ) ( )qy y cp y y+ < < , since y  is an upper 

bound on all conditional (and unconditional) p-values of y .  This is a convenient 

result for approximating the cp-value, especially when y  is small and the two bounds 

are close together.  For example, for any test where 1q < , if we observe data with a 

likelihood ratio of 1
10 , it follows that the cp-value must lie in the interval (9%,10%) , 

while the cp-value of data with a likelihood ratio of 1
28  must be between 3.4% and 
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3.6%.  When y  is not so small, the lower bound can still establish the non-

significance of the result, for example (1 ) 5%y
y+ >  whenever 1

19y >  in which case we 

know that ( )cp y  is also greater than 5%. 

 

We can compare the lower bound on the cp-value (i.e. 1
y
y+ ) with the conventional p-

values associated with various 1q < .  In the following plot, q  is in the range: 
1 1

101 1.1q< < . 

 

Figure 10.10 
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From the values displayed in this graph, it appears that it is only when 1

2q >  that the 

p-value is greater than the cp-value for any values of y , and since y  is always 

constrained to be greater than q , such values are close to one and both types of p-

value are large. 

 

 

As 0q → , the range of y  tends to (0, )∞  and  

 
2

(1 )
1

1( ) (1 )( ) 1
( ) ( )

q
qD y yqy y

D y y q

−
−

−
− ⎡ ⎤−

= →⎢ ⎥−⎣ ⎦
, 

hence 1( )q y yπ −→  and 1( ) y
q ycp y +→ .  Thus the cp-value converges to the lower 

bound as q  decreases. 

 



 Chapter 10: Conditioning in cases that are not log-symmetric.  

 307

It can also be shown (by derivations similar to the above) that when 1q > , 

(1 )( ) y
ycp y +<  this being a more constraining upper bound on the cp-value than y .  

This tells us that any data with a likelihood ratio 1
19≤  is significant at the 5% level.  

Also, 
1( )lim 1

( )q

D y
D y

−

→∞
=  and hence (1 )( ) y

q ycp y +→  (from below) as q → ∞ . 

 

Exhaustive conditional inference, in the Exponential case, tends to that of the log-

symmetric case when either 2

1
0q θ

θ= →  or q → ∞ ; in both cases the ( )cp y  

approaches the bound shown in the above plot, which is a lower bound for 1q <  and 

an upper bound for 1q > .  By contrast, ( ) 0p y →  for all finite y  when either 0q →  

or q → ∞  (see below). 

 

Figure 10.11 
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%

 
Note that ( ) 5%p y <  even for very large values of y  that constitute strong evidence 

in favour of H relative to K. 
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10.3 Scenarios involving the Gamma distribution.  

 

Larger samples from an Exponential population. 

 

Let 1, , nX X…  be independent and identically distributed random variables, each with 

an ( )Expo θ  distribution.  Let 
1

n

i
i

T X
=

= ∑ , then ~ ( , )T Gamma n θ   (also called an 

Erlang distribution) with density: 

 

 1 /1
( )( ; ) ,  0,  0 ( 1,  known).n n t n

n nf t t e t nθ θ θ− − −
Γ= > > ≥  

 

Hence the likelihood ratio, for testing θ , is given by: 

 

 1

2 1

( ; ) (1 )
( ; ) exp{ },n

n

f t t qn
f t qy qθ

θ θ
−= =  

 

where 2

1
0q θ

θ= > .  When 1q < , ( , )ny q∈ ∞  and when 1q > , (0, )ny q∈ , thus the 

support of Y  tends to +\  as n → ∞ . 

 

Using a well-known relationship between the Erlang distribution and the Poisson, it is 

easy to show that: 

 1 2( ) | ( 1; ) ( 1; ) |,D y F n F nλ λ= − − −  

where ( ; )F r λ  is the value, at the point r , of the distribution function of a ( )Pois λ  

random variable and  

 1

2 1

ln( )
(1 )

.

ny q
q

q

λ

λ λ

−⋅
=

−
= ⋅

 

 

The special case 1n =  reproduces the detail of the Exponential models examined in 

the previous section.  In that section we gave the results of exhaustive conditional 

inferences for various q ; we now examine the effect on those inferences of increasing 

the size of the sample.  We examine the cases 2q =  (which gave good results for 
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1n = ), 1
2q =  and 2

3q =  (which gave reasonably good inferences but where the cp-

value was found to be constant ( 1)y <  in the first case, and decreasing in the second) 

and 1.01q = , which gave very poor results, producing significantly small cp-values 

for moderate y .  Because the derivations are somewhat laborious, we consider only a 

small, representative number of likelihood ratio values, less than one.  We also 

compare some of the cp-values with the corresponding conventional p-values which 

do not work well when 1n = (see previous section).  Note, when comparing the plots 

of ( ) vs cp y y , for various n , that the range of y  varies depending on the value of n . 

 

Results for the case q=2. 

 

The following table shows the cp-values of various likelihood ratios for three sample 

sizes, also displayed in the following plot. 

  

Table 10.3 

( )y LR t=  1
20  1

10  1
4  1

2  1
1.25  (0.8)  

1n =  2.5% 5.0% 12.5% 25% 40% 

10n =  4.4% 8.4% 18.7% 31.9% 43.6% 

20n =  4.6% 8.7% 19.1% 32.4% 43.6% 

 

 

Figure 10.12 
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The cp-values converge fairly soon with virtually no difference between the values 

when 10n =  and 20n = .  The values are higher than when 1n =  but do not, in any 

way, contradict the natural interpretation of the likelihood ratio values. 

 

The conventional p-values, for 1n =  and 20n =  are as follows. 

 

Table 10.4 

 ( )y LR t=  1
20  1

10  1
4  1

2  1
1.25  

1n =  0.06% 0.25% 1.56% 6.25% 16% 

20n =  0.43% 0.81% 1.78% 3.12% 4.5% 

 

 

In contrast to the cp-values, the p-values associated with non-significant likelihood 

ratios (say 1
4≥ ) become smaller as n  increases so that although the p-values of the 

moderately large likelihood ratios, 1
2y =  and 1

1.25y = , are not significant when 1n = , 

they are significant when 20n = .  Thus increasing the sample size has made the 

conventional inference worse, rather than better (see Figure 10.13, below).  We 

commented on the same phenomenon in the section on the Normal variance; in 

general, when the sample is large enough to produce a test with very high power, the 

test is biased in favour of the alternative hypothesis to the extent that it gives 

significant p-values to data with moderate, or even large, likelihood ratios. 

 

Figure 10.13 
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Results for the case q = ½. 

 

The cp-values for this case are as follows.  Recall that when 1n = , ( ) 50%,cp y =  for 

all 1
2 1y< < . 

 

Table 10.5 

( )y LR t=  1
20  1

10  1
4  1

2  1
1.25  (0.8)  

1n =  * * * 50% 50% 

10n =  5.0% 9.7% 21.4% 34.8% 45.2% 

20n =  4.9% 9.5% 20.9% 33.4% 44.4% 

 

(* ny q>  which equals 1
2  when 1

2 ,  1q n= = .) 

 

The main advantage of larger n , in this case, is that it increases the range of y  so that 

we can get data that provides strong evidence against H.  The cp-value is constant 

over 1
2 1y< <  when 1n =  and this seems counter to the notion that the likelihood 

ratio can be regarded as a measure of the evidence in favour of H, relative to K, but 

when n  is larger, this effect disappears  – the cp-value is again increasing in y , so 

that it distinguishes between different likelihood ratios. 

 

Figure 10.14 
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Again we see fairly fast convergence of the cp-values as n  increases. 
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Results for the case q = 2/3. 
 

In this case, we found that, when 1n = , the cp-value decreases, as a function of y , on 

the interval 2
3( ,1) .  This result is very counter-intuitive although the cp-values 

themselves are reasonably consistent with the likelihood ratios, none of which can be 

regarded as constituting even moderate evidence against H relative to K.  Here, we 

compare these results (cp-values) with those from samples of size 10 and 20. 

 

Table 10.6 

( )y LR t=  1
20  1

10  1
4  1

2  1
1.43 (0.7) 1

1.25 (0.8)  1
1.11  (0.9)

1n =  * * * * 60.0% 54.7% 52.0% 

10n =  5.0% 9.8% 22.0% 35.3% 42.7% 45.2% 47.1% 

20n =  4.9% 9.6% 21.1% 34.4% 42.0% 45.2% 47.1% 

 

 

Figure 10.15 
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The same pattern emerges as when 1
2q = .  For larger n , the cp-values converge 

quickly and become an increasing function of the likelihood ratio; the values 

themselves are plausible with a likelihood ratio of 1
20  being significant at the 5% level 

while a likelihood ratio of 1
10  is not.  
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Results for the case q = 1.01. 
 

In this case, when 1n = , exhaustive conditional inference performs poorly assigning a 

cp-value of less than 1% to the non-significant likelihood ratio, 1
2  and (see below) a 

cp-value of less than 4% even for 0.8y = .  When 1.01q = , (0,1.01 )ny ∈  which 

equals (0,1.01)  when 1n = ; this restrictive upper bound on ( )yπ  causes the cp-

values to be unrealistically low.  By increasing n , we can make the upper bound 

larger and this may improve matters.  Since 1.01n  increases only slowly, we use 

larger values of n  than in the previous sections.  The cp-values for 1,n =  200 and 

8000 are given and plotted below. 

 

Table 10.7 

( )y LR t=  1
20  1

10  1
4  1

2  1
1.43 (0.7) 1

1.25 (0.8)  1
1.11  (0.9)

1n =  0.05% 0.11% 0.33% 0.97% 2.24% 3.77% 8.11% 

200n =  2.68% 5.50% 14.90% 28.89% 38.42% 43.05% 48.33% 

8000n =  4.74% 9.04% 19.92% 33.40% 41.62% 45.29% 49.28% 

 

 

Figure 10.16 
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In this case the cp-values take longer to converge, as one would expect.  The values 

for 4000n =  (not shown) are very close to those for 8000n =  suggesting that 
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convergence has occurred by this point.  The cp-values for large n  are consistent with 

the likelihood ratios: 1
4y =  and 1

2y =  have cp-values of approximately 20% and 33% 

respectively; this contrasts with the highly significant cp-values produced when 1n = .  

Thus it seems that we can overcome the problem of poor results for close hypotheses 

by increasing the sample size.  Below, we give the corresponding results for the 

conventional p-value (‘0%’ indicates a value less than 610 %− ). 

 

 

Table 10.8 

( )y LR t=  1
20  1

10  1
4  1

2  1
1.43 (0.7) 1

1.25  (0.8)  1
1.11 (0.9)  

1n =  0% 0% 0% 0% 0% 0% 48.7 10−× %

200n =  0% 0% 0% 43.0 10−× % 0.63% 5.19% 20.30% 

8000n =  37.9 10−× % 0.13% 2.28% 11.00% 19.78% 24.21% 28.53% 

 

  

Figure 10.17 
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Although we see some improvement in the p-value when n  is increased, the 

performance is still not good.  A likelihood ratio of 0.7 is still rated highly significant 

when 200n =  and 1
4y =  has a p-value well under 5% even when 8000n = .  To 

investigate further, we increased the sample size to as high as 200,000 with the 

following results.  (Note that 1n =  and 8000 are also displayed in this graph.) 
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Figure 10.18 
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This shows the phenomenon that occurred in tests on the Normal variance.  Initially 

the p-value improves when we increase the sample size, but as we increase it still 

further, the increasing bias in favour of K asserts itself so that the p-value decreases 

again.  In this case there is little difference between the p-values of y  based on 1n =  

and those based on 200000n =  – both assign small values to likelihood ratios close to 

one.  We can understand why this happens by looking at the distributions (under H 

and K) of the test statistic 
1

n

i
i

T X
=

= ∑ .  (The following plots indicate those values of t  

where y  equals 0.25 and 0.9.  The p-value is right-sided.) 

 

Figure 10.19 
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When 1n = , we are dealing with the single exponential distribution, i.e. t x= , (the 

value of x  corresponding to 0.25y =  is off the graph to the right).  The p-values of 

0.9y =  and 0.25y =  are obviously close to zero.  Because the distributions under H 

and K are so similar (if both were graphed on these axes we could not distinguish 

between them), the likelihood ratio is close to one over the bulk of the distribution(s) 

and smaller values are all in the extreme right-hand tail, hence the miniscule p-values. 

 

 

Figure 10.20 
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The test statistic, T , has mean of nθ  and standard deviation of | | nθ  (and is 

approximately Normal for large n ).  Thus the distributions become further apart as n  

increases; we can confirm this by looking at the difference between the means 

measured in terms of either of the standard deviations, i.e. 1 2 1 2| |
| |

| |
jj

n n
n

nθ θ θ θ
θθ

− −= ⋅ .  This 

value increases as n  increases. 

 

When 8000n = , the distributions of T , under the two hypotheses, are clearly 

distinguishable but overlap (in terms of probability) considerably.  The densities cross 

over each other (i.e. 1y = ) not far from the centres of the distributions and, as a result, 

the likelihood ratio is 0.9 not far from the centre of the null distribution giving it a 

reasonably large p-value. 
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Figure 10.21 
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By the time n  equals 200000, the distributions overlap only a little and the point at 

which the densities cross is far from the centres of both and in the right tail of the null 

distribution, as is the point with a likelihood ratio of 0.9, thus the p-value is again very 

small.  Evidently as the distributions get further apart this effect will become more 

pronounced: we could make the p-value of any likelihood ratio – no matter how large 

– very small by using a big enough sample.  

 

 

Tests on the second Gamma parameter. 

 

Let ~ ( , )X Gamma α β  where α  and β  are positive parameters, then: 

 11
( )( ; , ) ,  0.

x

Xf x x e xβα α
αα β β −− −

Γ= >  

 

The parameter β  gives the scale in the sense that, if ~ ( ,1)V Gamma α , then 

~ ( , )V Gammaβ α β .  X  has mean and variance αβ  and 2αβ , respectively.  The 

Exponential and Chi-squired distributions are subsets of the Gammas; the first 

corresponds to the (1, )Gamma θ  while the νχ  is equivalent to the 1
2( , 2Gamma ν ).  In 

the previous section, we considered various tests on the parameter β  (called θ ) when 

α  was a known integer, n , a situation that arises when we sample repeatedly from an 

Exponential population.  This is sufficient to demonstrate exhaustive inference on β .  

We now consider using E. C. inference to perform tests on the unknown α  when β  
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is known.  (We could also use E. C. inference to perform tests on T( , )θ α β=
�

 when 

neither parameter is known.) 

 

For fixed, known β  we test H: 1α α=  versus K: 2α α=  for which the likelihood ratio 

is: 

 
2 2 1 2 1

1

( ) ( ) ( )
( )

,  0

y x

x x

α α α α α
α

δ

β

κ

Γ − − −
Γ

−

=

= >
 

 

where 2 1δ α α= −  and 2

1

( )
( ) 0αδ
ακ β Γ

Γ= > , hence 1 2(0, ) ,   and y α α β∈ ∞ ∀ . 

 

 

The DDF function is: 

 1/ 1/
, ,( ) | [( ) ] [( ) ] |y y

X K X HD y F Fδ δ
κ κ

− −= − . 

 

 

Example 10.6 

 

Let 1β = , in which case α  is the mean and also the variance of the Gamma 

population.  Suppose we want to test H: 8α =  versus K: 5α =  which is a left-sided 

test in x .  The distributions are shown below. 

 

Figure 10.22 

2220181614121086420

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

x

and the coventional 5% cut-off for rejecting H.
Plot showing the densities of X under H and K

H

K

3.98

 



 Chapter 10: Conditioning in cases that are not log-symmetric.  

 319

A conventional test rejects H in favour of K at the 5% level whenever 3.98x ≤ , 

however the likelihood ratio of this value is 0.30y =  which is not at all significant7.  

Suppose 3.98x =  and thus has a conventional p-value of 5%, how does an exhaustive 

conditional test interpret this datum?  In order to calculate (0.30)cp , we need to find 

(0.30)π  from the DDF function. 

 

Figure 10.23 
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(0.30)D  equals 0.3174  as does (2.85)D , hence (0.30) 2.85π =  and 

(0.30) 21.8%cp = .  Again, the E. C. test result is far more consistent with the 

likelihood ratio than is the conventional test. 

 

 

10.4 Tests on the Weibull model. 

 

The various Weibull distributions are widely used in industrial contexts to model the 

failure rates of equipment and breaking strengths of materials. 

 

If ~ ( , )X Weibull α β , then X  has the following density: 

 1( ; , ) exp{ ( ) },  0,  0,  0x
Xf x x xα α α

βα β αβ α β− −= − > > > . 

 

 
                                                 
7 Less evidence against H that hh in the coin toss case. 
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The distribution function is: 

 ( ; , ) 1 exp{ ( ) },  x
XF x xα

βα β += − − ∈\ . 

 

As in the Gamma case, β  is a scale parameter.  When 1α = , X  has an Exponential 

distribution with θ β= .  The hazard function (used in survival analysis) of a Weibull 

variable is a multiple of 1x α−  and thus depends on x  only through the value of α . 

 

To test competing values of β  where α  is a fixed, known value, we use the 

likelihood ratio: 

 2

1 2 1( ) exp{ ( )}y xβ α α α α
β β β− −= − . 

 

When 2

1
1β

β < , y  is increasing in x  and 2

1
(( ) , )y β α

β∈ ∞ , otherwise y  is decreasing in x  

and 2

1
(0, ( ) )y β α

β∈ .  Note that, for a given value of 2

1
( )β

β , the support of Y  is larger 

when α  is larger.  Using the fact that ~ ( )X Expoα αβ , we can find the DDF statistic: 

 

 
1

( 1)

( ) 1
ry yD y

r r

− ⎧ ⎫⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

, 

where 2

1
( )r β α

β= . 

 

Since this has the same form as the Exponential DDF (substituting 2

1
( )r β α

β=  for 

2

1
q θ

θ= ) it follows that 1( ) y
ycp y +→  as 0r →  or r → ∞  and hence this occurs, for any 

value of 2

1

β
β , as α → ∞ . 

 

When 2

1
( )β α

β  is greater than one but very close to it, we will have the same problem – 

small cp-values for moderate likelihood ratios – that we found in the Exponential case 

with 1.01q = .  This can be overcome by taking a sufficiently large sample of Weibull 

observations.  The Exponential model is a special case of this model, as shown below. 
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If 1, , nX X…  are independent and identically distributed ( , )Weibull α β  random 

variables where α  is known, then 
1

n

i
i

V X α

=

= ∑  is a sufficient statistic for β  and has a 

( , )Gamma n αβ  distribution, of which β  is the only unknown component.  In the 

section on large samples from Exponential populations we carried out tests on αβ  for 

the special case 1α = .  Therefore the conditional tests that we performed for 1.01q =  

(i.e. 2 11.01β β= ) are also valid for testing 2 11.005β β=  given 2α = , or for testing 

2 11.001β β=  given 10α = , in the Weibull context8.  This shows that problems caused 

by hypotheses that are close together can be solved by increasing the sample size.   

 

The following example involves less extreme values of 2

1
( )β α

β . 

 

 

Example 10.7 

 

Suppose 2α = ; we want to test H: 1β =  versus K: 2β = , thus 4r =  and 
23

44exp( )xy = −  with 
4 1
3 3( ) 4 (4 )D y y y−= − , (0, 4)y ∈ .   
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8 Note: 

1
21.005 1.01=  and 

1
101.001 1.01= . 
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This is a right-sided test in x and the conventional 5% rejection region is (1.731, )∞ , 

however 1.731x =  has a likelihood ratio that is not much less than 1
2  1

2.36(0.423 )= , 

as shown in the plot below. 

 

Figure 10.25 
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For this value and the values associated with likelihood ratios 1
8  and 1

16 , we have 

derived the cp-values and p-values. 

 

Table 10.9 

x  ( )y LR x=  ( )yπ  ( )p y  ( )cp y

1.731 0.423 1
2( )≈  1.788 5.0% 21.4%

2.150 0.125 1
8( )  2.589 1.0% 8.06%

2.355 0.0625 1
16( )  2.905 0.4% 4.19%

 

 

The cp-value is significant at 5% only for the most extreme of the three values, that 

with a likelihood ratio of 1
16 , in contrast to the p-value.  Probably the results would be 

better still were 1n > . 
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For testing hypotheses about the value of α  when β  is known, we find exhaustive 

inferences by using the likelihood ratio: 

 

 1 1 1 2 1 2 1 2

2 2

( ; , ) ( ) ( )
( ; , ) ( ) exp{ ( ) ( ) }X

X

f x x x
f xy xα β α α α α α α α

α β α β ββ − − −= = − + . 

 

The bounds on the likelihood ratio are: 1

2
(0, )y α

α∈  when 1

2
1α

α >  and 1

2
( , )y α

α∈ ∞  when 

1

2
1α

α < .  As in the Cauchy case, y  is not a one-to-one function of x , but instead has a 

turning point at x β= .  This makes the task of finding the distribution of Y , and 

hence the DDF function, more laborious and we do not give the details here. 

 

 

10.5 A better model for studying the Welch phenomena. 

 

In the Welch case, the unconditional approach has been shown to have very 

undesirable, conditional properties when examined in the light of the universal 

ancillary9 statistic R .  However, we have shown that the conditional inference, based 

on R , also has undesirable features because it breaches the sufficiency principle. This 

only becomes obvious when we look, in detail, at the inferences as they apply to tests 

of two simple hypotheses, i.e. cases involving binary parameter spaces.  The statistic 

R  is not ancillary, in the restricted sense, with respect to any binary parameter space 

because it is not a function of the likelihood ratio statistic, which is the MSS in such 

cases.  The conditional approach produces different results from data with the same 

likelihood ratio and is thus in breach of the sufficiency principle.  However the 

situation is complicated by the fact that the unconditional inference shares the same 

flaw. 

 

If we are dealing with a binary parameter space and an ancillary statistic is not a 

function of Y  (the MSS), then any frequentist conditional method based upon it will 

                                                 
9 We use the term “universal ancillary” here in order to emphasise the fact that this statistic is ancillary 
over a large parameter space whereas most of the ancillary statistics we discuss are ancillary only for a 
given binary parameter space. 
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breach the SP even if the unconditional approach does not.  It is for this reason that 

frequentists restrict the application of the conditional principle to (ancillary) statistics 

that are functions of the MSS. 

 

The following artificial example shares the technical simplicity and interesting 

features of Welch’s case, without the problems created by a discrete likelihood ratio 

statistic.   

 

The Gradient Model. 

 

Let X  be a variable with density 

 

 1 1
2 2( ; ) 1,  ( , ),  ( 2, 2)Xf x x xθ θ θ= + ∈ − ∈ − . 

 

For all θ , the density is a straight line passing through the point (0,1)  and having a 

gradient of θ .  The parameter, θ , is neither a simple location nor a scale parameter, 

although ( )E X  is a linear, increasing function of θ .  When 0θ = , 1 1
2 2~ ( , )X Uni − . 

 
Figure 10.26 
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Large values of x  are more likely when θ  is larger and the likelihood ratio 

1

2

( ; )
( ; )( ) f x

f xy LR x θ
θ= =  is increasing (decreasing) in x  when 2 1 2 1<  ( )θ θ θ θ> ; the bounds 
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on the value of y  are 1

2

(2 )
(2 )

θ
θ

−
−  and 1

2

(2 )
(2 )

θ
θ

+
+ .  For any 1 2{ , }θ θ , Y  is a continuous variable, 

unlike in the Welch case, hence it is possible to find a unique, non-arbitrary most 

powerful rejection region for a test at any significance level.   

 

When 0x = , the likelihood (as a function of θ ) equals one for all θ .  Since the 

likelihood is flat, the only non-arbitrary likelihood interval (LI) for θ  is the 1
1 LI 

containing the entire natural parameter space ( 2,2)− .  By contrast conventional 

confidence intervals, based on 0x = , contain varying amounts of the parameter space 

depending on the specified coverage.  These conventional confidence intervals have 

some worrying features even when 0x ≠ . 

 

Unconditional confidence intervals. 

 

The unique, optimal (Neyman-Pearson), γ -level rejection regions for left-sided 

2 1( )θ θ< and right-sided 2 1( )θ θ>  tests of H: 1θ θ=  are, respectively: 

 1 1
1 12 2(- , ( , )] and [ ( , ) , )l uθ γ θ γ , 

where 

 
21

21

( , ) { 1 (1 2 ) / 4 1}

( , ) { 1 (1 2 ) / 4 1}.

l

u
θ

θ

θ γ θ γ θ

θ γ θ γ θ

= − − + −

= + − + −
 

 

It follows that H can not be rejected, in favour of any simple alternative hypothesis, at 

the 2
α -level as long as: 

 1 12 2( , ) ( , ).l x uα αθ θ< <  

 

This fact can be used to produce exact, unique, optimal (uniformly most accurate 

unbiased) 100(1 )%α−  confidence intervals for θ .  The CI based on x  is given by 

2 2( ) { : ( , ) ( , ) & ( 2, 2)}x l x uα αθ θ θ θ≡ < < ∈ −^  which is equivalent to: 

 

 2 21 1
4 4

2 (1 ) 2 (1 )( ) , ( 2, 2)
( ) ( )
x xx

x x
α α⎛ ⎞− − + −

= ∩ −⎜ ⎟− −⎝ ⎠
^ . 
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The following plot shows the bounds that produce 50% confidence intervals 

( 0.5α = ). 

 
Figure 10.27 
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The endpoints of each confidence interval can be read from the vertical axis.  Note 

that the intervals are wider when x  is close to zero. 

 

 

The following plot shows the bounds for constructing 80% (dashed lines) and 90% 

(solid lines) confidence intervals. 

 

Figure 10.28 
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The three intervals shown are (from left to right): 

 

i. The 90% CI for θ  based on 0.4x = − . 

ii. The 90% CI for θ  based on 0.1x = −  which is equivalent to the 80% CI for θ  

based on 0.1x = − . 

iii. The 80% CI based on 0.3x = . 

 

We can see that these intervals have a number of counter-intuitive features similar to 

those observed in the unconditional confidence intervals in Welch’s case.  Thus, for 

many values of x , the confidence interval contains all possible values of θ  

( CI ( 2, 2)≡ − ) even though the stated coverage is not necessarily 100%.  Specifically, 

this is true whenever x  is in the interval: 1 1
2 2 2 2( , )α α− + − ; for instance, the 90% CI 

contains all possible values of θ  whenever x  is in ( 0.276,0.276)− .  The interval 

1 1
2 2 2 2( , )α α− + −  is wide, when the coverage is high (since α  is small), so there will 

be many values of x  that produce CIs of this kind.  Note, from the above plot, that, 

when 0.1x = − , both the 80% and 90% confidence intervals contain the entire 

parameter space and are thus equal to each other as well as to the 100% CI.  In fact, 

the data 0.1x = −  produces the same interval when the coverage is specified anywhere 

in the range 68% to 100%.  The results are even more dramatic when x  is further 

away from zero; for example, when 0.4x = , the 50% CI is the empty set (see Figure 

10.27), as is the 90% CI whenever x  is sufficiently close to 1
2  or 1

2−  (Figure 10.28).  

In such cases, there is no chance that the confidence interval contains θ . 

 

Despite these strange properties, the intervals are optimal, in the sense intended by 

Neyman and Pearson; for example, the 50% intervals do indeed contain θ  50% of the 

time (in the long run).  The reasons for this are as follows.  When x  is close to zero, 

the 50% confidence intervals are very long and contain all, or nearly all, of the 

parameter space; they, therefore, contain θ  all, or most, of the time and this is enough 

to offset those occasions when the observation is far from zero and the interval is very 

short or empty and contains θ  only rarely, or never.   

 



 Chapter 10: Conditioning in cases that are not log-symmetric.  

 328

The Welch case came to be interpreted as showing that an average long-run success or 

failure rate does not necessarily reveal the aspects of the experimental result that we 

would regard as most relevant: if a ‘50%’ CI based on (say) 0.2x =  falls in a 

category where the success rate is much higher than 50%, it may be this value, not the 

‘50%’ figure, that is more relevant to our interests.  Clearly the same issue arises in 

the present example. 

 

 

An ancillary statistic. 

 

In Welch’s case, these phenomena are connected to the existence of a universal 

ancillary statistic ( R ); this is true in the gradient example as well.  If we let | |A X= , 

then 1
2~ [0, )A Uni  ( 2, 2)θ∀ ∈ − , and, since X  is the MSS for this model and 

parameter space, A  is a function of the MSS and thus ancillary (in the restricted 

sense) on the natural parameter space, ( 2, 2)− . We can use the distribution of 

|X A a=  to find the conditional coverage of the conventional confidence intervals; 

this may accord more closely with our intuition about the true meaning of such 

intervals.  Note that A  is a continuous variable on 1
2[0, )  and the distribution of 

|X A a=  is dichotomous (in the limit), since when A a= , X  is either a± . 

 

The conditional distribution of |X A a=  is shown below. 

 

 

Table 10.10 

x  a−  a+  

( | )P X x A aθ = =
G

 (1 )
2
aθ− (1 )

2
aθ+

 

(Note that (1 ) (1 )a aθ θ− > +  when 0θ < .) 

 

This can also be written as: (1 )
2( | | |) xP X x A x θ

θ
+= = =

G
.   
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Conditioning on A. 

 

Since θ  is bounded by –2 and 2, it follows that there are bounds on the above 

probabilities for any given a  (and also overall).  For all values of θ , the two 

probabilities must both lie in the interval 1 1
2 2( , )a a− +  and when a  is small ( x  is 

close to zero), both probabilities are close to 1
2  and to each other.  In such a case, the 

conditional p-value10 (for any null hypothesis) is close to 50% and there is no basis 

for rejecting any of the possible values of θ ; this is consistent with our observation 

that the likelihood function is close to flat in such a case.  The greatest difference 

between the two probabilities occurs as 1
2a →  and the two probabilities approach 

1
2 4

θ−  and 1
2 4

θ+  respectively; however, even in this case, we will only achieve a small 

conditional p-value for some observation if 1θ  is close to 2 or -2; for example, if 

1
2a ≈ , one of the possible observations has a probability less than 5% only if 

1| | 1.8θ > .  Thus it is only when 1θ  is an extreme value (in the context of the natural 

parameter space for the model) that it is possible to observe any data that has a 

conditional p-value sufficiently low to justify rejecting H in favour of some 

alternative. 

 

Is this consistent with the evidence based on the likelihood ratio value?  For any given 

hypothesised values 1θ  and 2θ , the likelihood ratio corresponding to data, x , is 

1

2

(1 )
(1 )

x
xy θ

θ
+
+=  where 1 1

2 2( , )x ∈ −  and sufficiently small values of y  will count as evidence 

against 1θ  relative to 2θ .  Consider (WLOG) the case 2 1θ θ< , so that the minimum 

possible value of y  is 1

2

(2 )
(2 )

θ
θ

−
− .  If 1θ  (the null value) is fixed but we consider different 

possible values of 2θ  satisfying 2 1θ θ< , we can show that 2 1θ θ∀ < , 

1 1

2

(2 ) (2 )
4 (2 )0 1θ θ

θ
− −

−< < < ; thus, for any x  and any 2 1θ θ< , y  can never be less than 1(2 )
4
θ− .  

It is possible to observe y  that is significantly small, (say) 1
16y ≤ , for some 2θ , only 

when 1(2 ) 1
4 16
θ− < , and thus 1 1.75θ > ; again we find that, under this model, we can find 

strong evidence against H (relative to some alternative), only when the value of 1θ  is 

                                                 
10 I.e. the p-value conditional on the observed value of a.   
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itself extreme.  This makes sense because the densities based on any two non-extreme 

θ -values, are very similar.  Despite this, we can find data with an arbitrarily low 

unconditional (i.e. conventional) p-value for any value of 1θ , because Y  is a 

continuous variable. 

 

Example 10.8 

Consider left-sided tests (i.e. 2 1θ θ< ) of the null hypothesis 0.2θ =  with data 

0.47x = − .  The following plot shows the density of X  under H and some left-sided 

alternatives.  The data is marked on the x-axis.  Note that, although the data is clearly 

more consistent with the alternatives than with H, the difference is not great. 

 

Figure 10.29 
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The conventional p-value of this data is , 0.2 ( 0.47) 2.7%XF θ = − = , which is significant.  

On the other hand, for all left-sided alternative hypotheses, the likelihood ratio of the 

data 0.47x = −  is in the range (0.467, 1).  Thus the evidence against H (relative to any 

2 1θ θ< ) is never much more than that which we get from observing a single coin toss 

resulting in a head, in the paradigm case.  Does conditioning on the ancillary statistic, 

| |A X= , improve the inference? 

 

The observed value of A  is | 0.47 | 0.47a = − = .  Conditional upon this value, X  has 

the following distribution if 0.2θ = . 
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Table 10.11 

x  0.47− 0.47+

0.2 ( | 0.47)P X x A= =
G

 0.453  0.547

 

Thus the conditional p-value of the data, under this hypothesis, is 45.3% in contrast to 

the p-value of 2.7%.  The conditional p-value is much more consistent with the range 

of likelihood ratios. 

 

Example 10.9 

 

Although most of the densities consistent with this model are similar to each other (as 

a result of the model constraints), it is possible to observe strong evidence with 

respect to the extreme case hypotheses, 2θ → −  and 2θ → .  For instance, using the 

data 0.47x = − , from the previous example, we find that the likelihood ratio for 

comparing H: 1.999999θ =  with K: 1.999999θ = −  is small and has the same 

significance as the outcome ‘5 heads’ in the coin toss example, that is, 
1

2

(1 0.47 ) 1
(1 0.47 ) 32.34( 0.47)LR θ

θ
−
−− = = . 

 

Figure 10.30 
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We use the conditional distribution of | 0.47X A = , under H, to find the conditional 

p-value, as follows. 
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Table 10.12 

x  0.47−  0.47+  

62 10
( | 0.47)P X x A−−

= =
G

 0.030000 0.9700000

 

Thus the conditional p-value of 0.47x = − , for testing H: 1.999999θ =  against 

K: 1.999999θ = − , is 3% and significant.  (The p-value is 0.09%.) 

 

The conditional coverage of the conventional confidence intervals. 

 

We have noted that the optimal 50% Neyman-Pearson confidence intervals for θ  are 

very varied in width, even including intervals that cover all or none of the values in 

the parameter space (-2,2).  We may examine the features of these confidence 

intervals by conditioning on the observed value of | |A X= .  This can be done with no 

loss of information since A  has the same distribution for all θ .   

 

Consider the case where we observe 0.1A = .  This value is associated with x  being 

either –0.1 or 0.1, both of which produce a 50% CI that is relatively wide: 

( 2.00,1.25)−  and ( 1.25, 2.00)−  respectively (in a parameter space of ( 2, 2)− ).  

Intuitively we tend to think that the real coverage of such intervals is more than 50%.  

Suppose we were to simulate a large number of samples (from the model and θ ), 

producing a CI from each sample, and then observing the long-run proportion of 

instances where the CI contains θ .  This proportion is the coverage of the CI 

procedure; in many well-known cases, this value is common to all θ .  When we look 

for the conditional coverage, we consider data arising from the conditional 

distribution of |X A  instead of from the unconditional distribution of X .  If 0.1a = , 

all of the confidence intervals that are produced will be one or other of the two 

intervals: ( 2.00,1.25)−  and ( 1.25, 2.00)− .  Since values in the range ( 1.25, 1.25)− +  

occur in both of these intervals, any θ  between –1.25 and +1.25 is contained in all the 

intervals that can be produced from data consistent with 0.1a = ; thus, the conditional 

coverage for these values of θ  is 100%.  Values of θ  between –2.00 and –1.25 are 

only contained in confidence intervals produced from 0.1x = − , and the proportion of 
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the samples where 0.1x = −  depends on θ , thus the coverage is itself a function of θ ; 

the same applies to values of θ  between +1.25 and +2.00. 

 

Figure 10.31 
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It is clear that the figure ‘50%’ does not well describe the reliability of this method 

since, θ∀ , the conditional coverage > 50%.  (It is the average coverage over a  that is 

50%, not the average over θ , so this is no contradiction.)  We can compare this with 

one of the short 50% confidence intervals.   

 

 

 

When 0.35a = , the intervals associated with the two possible values of x  (-0.35 and 

0.35) are very short: ( 2.00, 1.57)− −  and (1.57, 2.00)  respectively.  If 

1.57 1.57θ− < < , then the coverage of θ , by the confidence intervals, is 0%, since 

neither of the intervals contains any of these values.  On the other hand, the more 

extreme values of θ  are covered more than 50% of the time.  That is, if | |θ  is close 

to two, a high proportion of the intervals will contain θ , if not, none of them will.  

Since we do not know θ , we cannot really use the conditional coverage results (and, 

if we did know θ , we would not need intervals), but, they do serve to show how 

unsatisfactory the conventional intervals are.  
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Figure 10.32 
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When a  is sufficiently large, both of the intervals that can be produced are empty and 

thus the conventional 50% method has a conditional coverage of zero for all possible 

θ .  While there is a sense in which it is obvious that the empty intervals and whole 

parameter space intervals have a ‘confidence’ of zero and 100%, rather than 50%, we 

have shown that these values can be derived as the conditional coverage rates of the 

conventional intervals.  The fact that these values accord with our intuition provides 

support for the view that conditioning brings us closer to a realistic interpretation of 

the data. 

 

Conditioning on the DDF statistic. 

 

In the previous sections, we conditioned on the ancillary statistic | |A X= , which has 

the same distribution for all ( 2, 2)θ ∈ − .  In our discussion of the Welch example, we 

showed that the ancillary statistic, R , which has the same distribution θ∀ ∈\ , 

should not be used for tests of two simple hypotheses because it is not a function of 

the MSS for any binary parameter space (BPS); conditioning upon it breaches the SP 

and produces nonsensical results.  We also showed that, for each pair of hypothesised 

values { , }i jθ θ , there exists a statistic ( ijA ) that is ancillary on the BPS and can be 

used to get effective conditional results and we used these statistics to derive a 

superior conditional confidence interval.  In the present example, we have found that 
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conditioning upon | |A X=  seems to produce results that are much better than the 

unconditional Neyman-Pearson results.  Nevertheless, we must remember that 

conditioning upon the range, R , is still regarded as the right approach to take, in the 

Welch case.  Does A , in the gradient example, have the same shortcomings as R  in 

the Welch case?  How well does it work for tests of two simple hypotheses; is it a 

function of the MSS for any BPS; and how does it compare with the exhaustive DDF 

statistics?    

 

Since, 1 2, ,θ θ∀  1

2

(1 )
1 2 (1 )( ; , ) X

XY LR X θ
θθ θ +

+= =  is a continuous variable, it follows that we 

can apply the theory of Chapter 9 to this model.  For any BPS, 1 2{ , }θ θ , we can 

identify the ancillary DDF statistic, ( )D y , which is ancillary in the restricted sense, 

(i.e. it is a function of Y ), and partitions the sample space of Y  exhaustively.  An 

ancillary statistic defined over a larger parameter space, often lacks one or both of 

these features, however, in this case, the statistic | |A X=  partitions the sample space 

of X  into subsets of two elements ( x  & x− ), except that 0x =  is in a subset by 

itself.  Since (in this model) y  is always a one-to-one function of x , A  must partition 

the sample space of Y  similarly.  Also 1 2( 0) 1,  ,LR x θ θ= = ∀ , thus A  is an 

exhaustive ancillary statistic on every BPS. In order to compare A  with the various 

( )D Y  statistics, we derive the details of those variables. 

 

 For all 1,θ 2θ  and y , 

 
2 1

( ) ( ) ( ),D y F y F yθ θ= −  

where ( )F ⋅  is the distribution function of 1 2( ; , )Y LR X θ θ= .  Using the relationship 

between Y  and X , and the known distribution function of X , we can derive the 

following: 

 
2

1 1
1 2 1 22 4 2

1 2

( 1)( ) | | ,  , , .
( )

yD y y
y

θ θ θ θ
θ θ

⎧ ⎫−⎪= − ⋅ − ∀⎨ ⎬−⎪ ⎭⎩
 

For fixed 1θ  and 2θ , this depends on y  only through the expression 
2

2
1 2

( 1)
( )

( ) y
y

D y
θ θ

−

−
=� , 

which is a one-to-one function of ( )D Y  and thus an equivalent ancillary statistic.   
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D  and D�  both partition the sample space of Y  into subsets of the form { , ( )}y yπ  

where ( ) ( ( ))D y D yπ=� � .  It is straightforward to show that the pairing function is: 

 

 1 2 1

2 1 2

{( ) 2 }( ) .
{2 ( )}

yy
y

θ θ θπ
θ θ θ

+ −
=

− +
  

 

(This is the same for any hypothesis pair such that 2

1
qθ

θ = , since [(1 ) 2]
[2 (1 )]( ) q y

qy qyπ + −
− += , thus 

all scenarios with the same value of 2

1

θ
θ  are in the same E. C. inference class.) 

 

We want to compare the partition produced by D�  with the equally fine partition 

produced by the exhaustive ancillary statistic, | |A X= .  A  pairs x  with x− ; what 

does D�  pair x  with?  

 

Since y  is a one-to-one function of x , we can invert this function to find x  as a 

function of y , hence: 

 1

2 1 2

(1 ) ( 1)
(1 ) ( )( ) .x y

x yy LR x xθ
θ θ θ

+ −
+ −= = ⇔ =  

Thus 
2

2
1 2

( 1) 2
( )

( ) y
y

D y x
θ θ

−

−
= =� , but this is also equal to 2( )x− , and hence11 it follows that 

( ) ( )y LR xπ = − , and pairing y  with ( )yπ  is equivalent to pairing x  with x− .   

 

We have shown that, regardless of the values of 1θ  and 2θ , A  is always a one-to-one 

function12 of 1 2( ; , )D y θ θ�  (and of 1 2( ; , )D y θ θ ) and partitions the sample space the 

same way.  Thus A  is equivalent to each and every one of the DDF statistics 

( 2
1 2{ , }θ θ ∈\ ).  This is possible because y  is a function of 1θ  and 2θ  as is 

1 2( ; , )D y θ θ ; it so happens that, in this case, the appearance of 1θ  and 2θ  (along with 

x ) in the formula for y , and the appearance of 1θ  and 2θ  in the function 1 2( ; , )D y θ θ , 

act to exactly cancel each other out so that 1 2( ; , )D y θ θ  is a function of x  alone, 

1 2,θ θ∀ .  While we have found that it is usually more helpful to structure a test in 

                                                 
11 This reasoning is dependent on the fact that y  is a one-to-one function of x  which we know to be 
the case. 
12 Not the same one-to-one function. 
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terms of the likelihood ratio, y , this is a case where the natural variable describes the 

same results more simply.  (However there has to be serendipity in identifying A  as 

an ancillary statistic, whereas the DDF algorithm produces that ancillary statistic 

automatically.)   

 

This equivalence of ancillary statistics makes another feature of | |A X=  evident; we 

noted earlier that A  is a function of the MSS for ( 2, 2)θ ∈ − , which is X ; however, it 

is now clear that, for any binary parameter space 2
1 2{ , } ( 2, 2)θ θ ⊂ − , A  is also a 

function of the MSS on that binary parameter space (i.e. Y ).  Thus | |A X=  is an 

ancillary statistic, in the restricted sense, on all possible binary parameter spaces, as 

well as on the natural parameter space, and is equivalent to the statistic 1 2( ; , )D y θ θ , 

for all 1θ  and 2θ .   

 

Since we can use A  in place of the DDF statistic and A  is function of X  alone and 

the conditional distribution of |X A a=  (under H) depends only on x  and 1θ , we can 

formulate the conditional p-value (which we can now call the cp-value since it is 

based on the DDF statistic) for the left 2 1( )θ θ< and right-sided 2 1( )θ θ>  cases 

without specifying the exact value of 2θ .  Thus: 

 

1

1

(1 )
2

(1 )
2

,          0
Right-sided cp-value( )

100%,         0.

100%,         0
  Left-sided cp-value( )

,          0.

x

x

x
x

x

x
x

x

θ

θ

+

+

⎧ >⎪= ⎨
≤⎪⎩

≥⎧⎪= ⎨
<⎪⎩

 

 

Although these look similar to typical p-values, they are substantially different 

because (like all cp-values based on DDF statistics) they assign to all data with a 

likelihood ratio of more than one, a cp-value of 100%.  The cp-value’s insensitivity to 

the exact value of 2θ  reflects the fact that, when we change 2θ  to (say) 2θ ε+ , then 

(as long as y  is still on the same side of one) the change in y  (from a function of 

1 2( , , )x θ θ  to the same function of 1 2( , , )x θ θ ε+ ) is cancelled out by the change in the 

cp-value (from a function of 1 2( , , )y θ θ  to the same function of 1 2( , , )y θ θ ε+ ).  Any 
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method that breaches the likelihood principle, as ECI does, may be insensitive to the 

exact value of K because insensitive to the exact value of the LR.  For given data and 

null hypothesis, changing K will generally change the likelihood ratio of the data but, 

in many cases (such as the present one), it also moves us from one inference class to 

another.  Because this changes ( )cp y  as a function of y , it is possible for the cp-

value to remain the same even though y  has changed.  The very nice results that we 

found for the Normal location model arise because all the possible tests are in the 

same inference class and, hence, changing K and y  inevitably changes ( )cp y . 

 

Conditional and unconditional p-values. 

 

In log-symmetric models, the conventional p-value is always less than, and therefore 

more significant than, the cp-value; this is a corollary of the fact that ( )cp y  is an 

increasing function of 1y < .  By contrast, we find that the gradient model, applied to 

certain binary parameter spaces, presents us with cases where ( )cp y  is a decreasing 

function of y  ( 1)y <  and hence ( ) ( )cp y p y<  for some y ; this does not, however, 

result in instances where the conditional inference produces a significant result and 

the unconditional inference does not. 

 

The general formula for the cp-value obtained by conditioning on the observed value 

of ( )D Y  is: 

 ( ( ) 1)( ) ,  1
( ( ) )
y ycp y y

y y
π

π
−

= <
−

 

where y  is the observed likelihood ratio and ( )π ⋅  is the pairing function defined by 

( ( )) ( )D y D yπ = . Thus, for the gradient model: 

 1 2

1 2

( )( ) ,  1.
2( )

ycp y y
y

θ θ
θ θ

−
= <

−
 

 

It follows that ( ) 0d
dy cp y <  if and only if 1 1 2( ) 0θ θ θ− < , and is otherwise positive.  

Note also that ( ) 0d
dy cp y = , and the cp-value is constant, if and only if 1 0θ = ; in that 

case 2 1( ) y
yyπ −=  and ( ) 50%cp y =  for 1y <  exactly as in the Exponential case with 
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2
3q = . It is not hard to show that this ( )yπ  is the only pairing function that can 

produce a constant cp-value. 

 

( )p y  can only be greater than ( )cp y  if the latter is a decreasing function of y  on 

some interval in (0,1) .  For the Gradient model, the function ( )cp y  has no turning 

points in the interval (0,1) , thus, if ( )cp y  is decreasing anywhere in (0,1) , it is 

decreasing everywhere in (0,1) .  Since ( ) 50%cp y →  as 1y →  (see §9.5), it follows 

that ( ) 50%cp y >  wherever ( ) ( )p y cp y> , thus neither type of p-value is significant. 

 

The following plot highlights those points in the 1 2( , )θ θ -plane where ( )cp y  is a 

decreasing function of 1y < . 

 

Figure 10.33 
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We will look at a particular instance where the cp-value decreases as the likelihood 

ratio increases. 

 

Example 10.10 

 

Consider testing H: 1.1θ =  versus K: 1.8θ =  so that 1 2( , )θ θ  lies in the highlighted 

region of the above plot. 

 

The following plot shows the relationship between x  and ( )y LR x= , for this test. 
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Figure 10.34 
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We note that y  is a decreasing function of x  (so this is a right-sided test, in terms of 

x ) and that y  is less than one, providing some evidence against H, only when 0x > .  

Also the likelihood ratio is always greater than 0.816 1
1.225=  – it is not much less than 

one for any value of x .  This shows (as does the plot below) that the two distributions 

are very similar to each other where 0x > . 

 

Consider the two observations 1 0.03x =  and 2 0.48x = ; these values are at opposite 

extremes among the positive values of x .  

 

Figure 10.35 
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The two values are marked on the above plot showing the densities of X  under the 

two hypotheses.  Since this is a right-sided test, the conventional p-value of each point 

is the area to the right of the point under the null density.  Although 0.48x =  is very 

large in terms of the possible values of x , it does not appear to provide strong 

evidence against H relative to K.  The likelihood ratios, p-values and cp-values of 

these observations are shown below. 

 

Table 10.13 

x  ( )y LR x=  ( )p y   ( )cp y  

0.03 1
1.020.98 =  60.70% 51.65%

0.48 1
1.220.82 =  3.08% 76.40%

 

 

Both of the likelihood ratios are very close to one, indicating that the evidence against 

H, from both observations, is extremely weak.  Counter-intuitively, the cp-value is 

higher when the likelihood ratio is lower, but, despite this anomaly, it is clear that the 

cp-values give a much more accurate idea of the significance of the data than the p-

values.  In particular, the observation 0.48x = , which has a LR only slightly less than 

one, has a significant p-value of 3.08% whereas the cp-value is 76.40% indicating 

insignificant evidence against H. 

 

 

To find out what happens when 1n > , we simulated 2500N =  sets of data, with 

20n =  observations each, under both H ( 1.1θ = ) and K ( 1.8θ = ). From this we were 

able to obtain likelihood ratio values and, hence, the empirical distribution functions 

of Y  under H and K, and the empirical DDF statistic.  The results indicated that, 

when 20n = , the ( )cp y  function is increasing in y , thus, it seems that (as in the 

Exponential case) the anomalous relationship between y  and ( )cp y  disappears when 

the sample is larger.  
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Conditional confidence intervals. 

 

Since we know how to use the data, x , to test all possible pairs of hypotheses, we can 

derive a conditional confidence interval for θ  from x .  The α -level conditional 

confidence interval (CCI) contains all and only those values of θ  that would not be 

rejected (as the null value) in favour of any alternative in ( 2,2)−  at a conditional 

significance level less than or equal to α .  Since | |A X=  is the exhaustive ancillary 

statistic, equivalent to the DDF statistic, for each and every binary parameter space, 

we can derive the conditional confidence intervals in terms of x  and a  rather than in 

terms of y  and ( )yπ .   

 

The result of any test of H: 1θ θ=  can be found from the cp-value, below. 

 

 

1

1

(1 )
2

(1 )
2

,  0
Right-sided cp-value( )

1,         0.

1,         0
  Left-sided cp-value( )

,  0.

x

x

x
x

x

x
x

x

θ

θ

+

+

⎧ >⎪= ⎨
≤⎪⎩
≥⎧⎪= ⎨
<⎪⎩

 

 

The value of | |a x=  does not depend on the hypotheses in question.  Note that 

( ,i jθ θ∀ ) 1
2cp-value( )x a> −  for all x , since 12 2θ− < < .  It follows that α 13 must 

either be zero or be greater than 1
2 a− , since for no test does any value of x  yield a 

cp-value in the range 1
2(0, ]a− .  When 0α = , zero is the common conditional 

significance level of all the tests (i.e. for all 2( , ) ( 2, 2)i jθ θ ∈ − ) and thus the CCI is 

based on tests that all have the same (conditional) significance level, just as 

conventional confidence intervals are usually based on tests that all have the same 

unconditional level.  Note that most of the values of 1
2[0, )a ∈  require us to use 0α =  

since 1
2 a−  is unreasonably large for a significance level: 1

2 5%a− <  only when 

0.45a > . 

 

                                                 
13 

2( , ) ( 2,2)
max ( , )

i j
a i j

θ θ
α α θ θ

∈ −
= . 
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From the above formula for cp-value, we can easily derive the α -level conditional 

confidence interval for θ  as follows. 

 

(1 2 )
1
2 (1 2 )

( ,  2),   0
For any ( ,1),   ( )

( 2,  ),  0.

For 0,   ( ) ( 2, 2),  for all .

a

a

x
a CCI x

x

CCI x x

α

α
α

α

− −

−

⎧ >⎪∈ − = ⎨
− <⎪⎩

= = −
     

 

When 0x = , cp-value( ) 100% ( & )i jx θ θ= ∀  and hence 1 0α α< ⇒ =  and the CCI is 

the whole parameter space.  When we use 0α = , we are entitled to describe ( 2, 2)−  

as the 100% CCI for θ , since zero is the common (conditional) significance level of 

all the tests on which the CCI is based and 100% is clearly the coverage of the 

interval. No other achievable value of α  produces this interval, whereas the 

conventional approach produces ( 2, 2)−  as the 100(1 )%α−  CI (based on a given x ) 

for a wide range of α -values (not just 0α = ). 

 

Only values of a  that are close to 1
2  allow us to exclude any part of the parameter 

space from the CCI with small α .  This is consistent with the fact that non-extreme x  

are reasonably consistent with all the θ  values.  Thus if 0.3a =  ( 0.3 or 0.3x = − ), 
1
2 20%a− =  and we cannot use any 20%α <  except 0α =  which gives the 100% 

conditional confidence interval ( 2, 2)− .   

 

If 0.46a =  ( 0.46x = −  or 0.46 ) then 1
2 4%a− =  and we may use (for instance) 

5%α =  to obtain the following non-trivial CCI: 

 

 
( 1.9565,2.00),   if 0.46
( 2.00,1.9565),   if 0.46.

x
x

− =⎧
⎨ − = −⎩

 

 

More generally, for any 0.45a > , there is a valid CCI at the 5% level given by: 

 
0.9

0.9

( , 2),   
( 2, ),  .

a

a

x a
x a

− =

− = −
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The width of this interval is 0.92 a+  which tends to a minimum of 3.8 as 1
2a → .  Thus 

even the most extreme data can only exclude a small range of θ -values with any 

confidence.  This is consistent with the nature of the model. 

 

Summary. 

 

For the Gradient model, the DDF statistic for any binary parameter space, in the 

natural space ( 2, 2)− , is equivalent to the universal ancillary statistic | |A X= , which 

can thus be used to produce conditional tests and confidence intervals.  The 

conventional ‘optimal’ approach produces confidence intervals and test results that 

are intuitively unsatisfactory.  We can get a formal account of the flaws in the 

conventional approach by considering the conditional distributions of |X A a= , in 

preference to the unconditional distribution of X , (for example, the conditional 

coverage of a ‘long’ 50% confidence interval is greater than 50%, θ∀ ).  The 

inferences obtained by conditioning on A  are more consistent with our understanding 

of the model, which operates under considerable restrictions not reflected in the 

conventional results.  This model produces scenarios that show the superiority of the 

conditional approach much more clearly than those produced by Welch’s Uniform 

example.   

 

10.6 Tests on general Normal hypotheses. 

 

Let 2~ ( , )X N µ σ  and consider two hypothesised values of the two-dimensional 

parameter of interest 2 T( , )θ µ σ= , i.e. H: 2 T
1 1 1( , )θ θ µ σ= =  and K: 2 T

2 2 2( , )θ θ µ σ= = .  

Each hypothesis specifies both the mean and variance of X .  If 2 2
1 2σ σ= , we can view 

2σ  as known theoretically and use the log-symmetric structure, discussed in Chapter 

8, to test hypotheses about the mean.  When the variances differ, ln y  is a quadratic 

function14 of x  and this can be used to derive the distribution functions of Y . 

                                                 
14 2ln ,y ax bx c= + +  where: 2 2

2 1

1 1 1
2 ( ),a

σ σ
= −  1 2

2 2
1 2

( )b µ µ
σ σ

= −  and 
2 2

2 1 2
2 21 1 2

1
2ln( ) ( ).c σ µ µ

σ σ σ
= − −  
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Let 

 

2 2
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Note that 1 2 0mσ σ< ⇒ >  and (0, )my e∈ , while 1 2 0mσ σ> ⇒ <  and ( , )my e∈ ∞ . 

2
2 3 4

2,  1
Let ( ) ln( )  where {1,2} and .

1,  2i j

i
h y y i j

i
σ γ γ γ

=⎧
= + ⋅ ∈ = ⎨ =⎩

 

Then  

 
5,2 2 5,2 2 5,1 1 5,1 1

( ) ( ) ( )
| [ ( )] [ ( )] [ ( )] [ ( )] | .

K HD y F y F y
h y h y h y h yγ γ γ γ

= −
= Φ + − Φ − − Φ + + Φ −

 

 

Example 10.11. 

 

Given that 2~ ( , )X N µ σ , the null hypothesis (H) states that 2( , ) (20, 4)Tµ σ =  and 

the alternative hypothesis (K) that 2( , ) (37, 25)Tµ σ = .  

Figure 10.36 
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When the variances are different, ( )y LR x=  is no longer a one-to-one function of x , 

and the conventional p-value is (in terms of y ):  

 1 2( ) ( ) ( ( )) ( ( )),H H Hp y P Y y P X x y P X x y= < = < + >  

where 1( )x y  and 2 ( )x y  are the roots of the equation ( )y LR x=  (shown below). 

 

Figure 10.37 
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When 1 1 2 220,  2,  37,  5µ σ µ σ= = = = , (0, 2433.88)y ∈ .  The DDF statistic is shown 

below for values of y  in 9(10 ,10)− .   

 

Figure 10.38 
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For given values of y  we can find the corresponding ( )yπ  to any given level of 

accuracy, and hence the cp-values.  For six values of y  we have derived ( )p y  and 

( )cp y . 

 

Table 10.14 

( )y LR x=  1
100.1 =  1

3.330.3 =  1
20.5 =  1

1.250.8 =  1
0.831.2 =  1

0.109.94 =

1( )x y  6.95 7.52 7.77 8.02 8.25 9.52 

2 ( )x y  26.55 26.00 25.75 25.50 25.28 24.00 

( )yπ  4.9 2.6 1.8 1.2 * * 

( )p y  0.05% 0.15% 0.20% 0.30% 0.41% 2.28% 

( )cp y  8.13% 20.87% 30.77% 40.00% 100% 100% 

 

 

As on some former occasions, we note that the conventional approach produces 

highly significant results even when the likelihood ratio is greater than one and the 

data has a higher likelihood under H than under K.  Looking in more detail at the data 

represented by the last column of the table, we see that, when we observe 24x = , the 

p-value is 2.28% but the data is surely more consistent with H than with K (see 

below).  

    

Figure 10.39 
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Observed value x=24 shown with the
densities of X under H and K.  LR(24)=10.
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10.7 Conjectures on the asymptotic properties of exhaustive 

conditional inference. 

 

Consider a random sample15 1, , nX X X= …
�

 providing evidence about the sole 

unknown parameter, θ .  In some cases, such as the Exponential, we have seen that, 

when n  is large, the cp-functions, ( )cp ⋅ , produced for different scenarios are very 

similar to each other, although they differ dramatically when 1n = .  This raises the 

possibility that there may exist a reasonably general ECI in the limit as n → ∞ .  The 

fact that the range of ( )Y LR X=
�

 approaches +\ , in all cases, as n → ∞ , lends some 

support to this conjecture; it is only in cases where the range is severely restricted that 

we have seen the ECI in conflict with the LR, and with the ECI for other scenarios. 

 

If convergence of the cp-function to the same limit occurs across a large number of 

models, then there exists a comprehensive asymptotic EC inference-class, and it 

follows that exhaustive conditional inference is (to a large degree) asymptotically 

consistent with likelihood theory.  Examining the asymptotic behaviour of ECI in any 

depth is beyond the scope of this work; in this section we consider briefly the possible 

implications of the asymptotic Normality of many maximum likelihood estimators. 

 

Under reasonably common regularity conditions16, θ  has a unique maximum 

likelihood estimator, θ̂ , that is asymptotically Normal with a mean of θ  and variance 

equal to the minimum variance (Cramér-Rao) bound.  That is, as n → ∞ , the 

distribution of θ̂ → ( )( , )d
nN θθ , where 2

2
1( ) [ { ( ; )}]id E L Xθ θ

θ θ −∂
∂

= −  and ( ; )L x θ  is the 

common likelihood function of the X  variables.  Thus, in the limit, any hypothesis of 

the form 'θ θ=  entails ( ')ˆ ~ ( ', )d
nN θθ θ , and any two simple hypotheses specifying θ  

give rise to the type of scenario discussed in the previous section, where each 

hypothesis defines a different mean and variance for a Normal variable, i.e. θ̂  plays 

the role of X  in §10.6.  θ̂  is asymptotically sufficient and hence  

ˆ( ) ( ( ))LR Y LR Xθ → =
�

 as n → ∞ . If n  is large and the regularity conditions are met, 

                                                 
15 Independent and identically distributed variables, 
16 See Kendall & Stuart, pp. 39-43. 
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it is reasonable to use the asymptotic distribution of θ̂  to perform an ECI, in the 

manner illustrated in the previous section.   

 

Consider the model 2~ ( , )X N µ σ  with two simple hypotheses, as in §10.6, but now 

suppose that 2 id
i nσ = .  For each value of n , the scenario is completely defined giving 

rise to a pairing function and hence a cp-function. We have not derived the form of 

the pairing function for this type of scenario – the particular values of ( )yπ  used to 

produce the cp-values in Example 10.11 were derived numerically – nevertheless a 

pairing function exists.  If we let n → ∞  but hold 1 2 1,  ,  dµ µ  and 2d  constant, what 

happens to the pairing function?  Does it converge and, if so, does the limit depend on 

any of 1 2 1,  ,  dµ µ  and 2d , or is there a general limit that applies regardless of the 

values taken by these variables?  If it converges, then the limit of the pairing function 

also applies to any case where the maximum likelihood estimator of θ  has the 

necessary asymptotic characteristics.  For example, if the limit is independent of 

1 2 1,  ,  dµ µ  and 2d , it will apply to any case where the MLE of θ  is asymptotically 

Normal; if the limit depends on (say) 1d  and 2d , then it will apply to any case where 

the MLE is asymptotically Normal and 1 1( )d dθ =  and 2 2( )d dθ = .  The former 

possibility is the more interesting since it would imply that, whenever n  is large 

enough, the ECI on any θ  where θ̂  is asymptotically Normal is the same and, thus, 

there exists a huge asymptotic E. C. inference class. 

 

The Normal location case, 2~ ( , )iX N µ σ  ( 2σ  known), is a particular case of the 

above type, where the limiting properties are completely known since 
2ˆ ~ ( , )nX N σθ µ= .  The sufficiency is exact for all n , and the model is log-symmetric 

for all n .  Thus ( )n yπ  is the same for all n  and trivially constitutes the limit, i.e. 

1( )L y yπ −= .  Thus, we know that whenever 1 2d d= , the pairing functions are 

independent of the values 1 2,  µ µ  and d  (for all n  as well as in the limit).  If  ( )n yπ  

converges for the more general Normal case, and the limit to which it converges is 

independent of 1 2 1,  ,  dµ µ  and 2d , then this unique limit must be 1y− , since it is 
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applicable to the Normal location case.  We consider two examples of the general 

Normal model to see whether these conjectures have any plausibility.   

  

Example 10.12 

 

Consider the particular cases where 2~ ( , )X N µ σ  and 1 20µ = , 2 37µ = , 1 16d = , 

and 2 100d =  (thus 2 16
1 nσ =  and 2 100

2 nσ = ).  In Example 10.11, we performed an ECI 

for this case when 4n = .  We want to see what happens to the pairing function as n  

increases.   

 

As n → ∞ , ( ) 1D y → , for all finite y ; this makes it difficult to find ( )n yπ  

numerically, for large n , since we need to evaluate ( )D y  to a high level of accuracy 

in order to distinguish between 1( )D y  and 2( )D y  when both are very close to one.  

For this reason, we have derived the pairing functions only for the cases 1n = , 4n =  

and 20n = .  The following plot shows the pairing functions for these three cases 

compared with the log-symmetric pairing function 1( )y yπ −= . 

 

Figure 10.40 
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Plot of the pairing functions for n=1, 4, and 20 and
the log-symmetric pairing function, 1/y.

 

It seems likely that the pairing function converges and 1y−  is a possible limit – more 

than this we cannot say.  
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Example 10.13 

Now, consider the cases where 2~ ( , )X N µ σ  and 1 50µ = , 2 40µ = , 1 25d = , and 

2 81d = .  (No specific examples can establish a general result, but we have attempted 

to pick two examples with little in common.  Thus this example has 1 2µ µ>  and the 

smaller variance associated with the larger mean, in contrast to the previous case.) 

 

Figure 10.41 
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Plot of the pairing functions for n=1, 4, 20, and
40, and the log-symmetric pairing function, 1/y.

 
As in the previous case, convergence seems likely and the log-symmetric pairing 

function is a possible limit.  The following plot shows the two sets of pairing 

functions together.  There is nothing in this plot to indicate that the two examples 

produce different limits.   

 

Figure 10.42 
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On the basis of this very limited investigation, we may conjecture that the pairing 

functions for the general Normal model converge to the same limit in all cases.  If this 

were shown to be true, it would follow that the limit is 1y−  and (1 )( ) y
ycp y +→  as 

n → ∞  ( 1)y∀ < .  It would also follow that this asymptotic ECI would be applicable 

to a wide range of non-Normal data whenever n  is sufficiently large. Intuitively we 

would expect our inferences to improve with increased sample sizes and the above 

relationship between the cp-function and the likelihood ratio certainly ensures that the 

cp-values make sense from a likelihood point of view.  By comparison, we have 

frequently noted that ( ) 0p y →  as n → ∞ , for all finite y .  This result is consistent 

across models but is patently ridiculous since it means that any likelihood ratio, no 

matter how large, is interpreted as significant evidence against H relative to K once 

the sample size is large enough.   


