Chapter 6: Welch’s Uniform example re-visited.

6.1 Introduction.

In Chapter 5 we showed that there are some serious difficulties with the application of
the restricted conditional principle; notably: frequent absence of an exact ancillary
statistic, difficulty of choosing between competing ancillary statistics, and lack of
continuity of inference. We can resolve these problems by adopting the unrestricted
CP of Birnbaum, but in that case we will need to abandon frequentism altogether and
adopt the LP. If we wish to remain within the frequentist framework, we may still
take the view that Cox’s conditional approach is superior to conventional frequentist
inference because it excludes an irrelevant part of the sample space. In view of the
unsatisfactory nature of many standard unconditional inferences (outlined in Chapter
3), it makes sense to pursue the conditional option and, in particular, to examine how
far we can extend its scope while still remaining frequentist. By re-examining
Welch’s Uniform example in detail, we are able to identify serious flaws in both of
the methods used to date; this insight points us in the direction of an alternative
conditional approach, one that produces superior results. In later chapters we will
find that the new conditional approach is applicable to many other, more realistic,

scenarios.

Welch’s example is valuable because it is a simple case where an ancillary statistic
(the range, R) allows us to contrast the unconditional Neyman-Pearson approach with
the conditional approach of Fisher; the advantages of this were recognised
immediately. Welch was convinced of the superiority of Neyman’s method and his
view did not change as a result of studying this example though surely he did not
study it very closely. Later commentators looked at the conditional features of the
confidence intervals and tests and were inclined to support Fisher’s point of view.
However we believe that both sides of the debate have overlooked some important

features of the example.
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We will start by re-stating the connection between Neyman-Pearson critical regions

and the likelihood ratio statistic, and considering the issue of randomisation.

6.2 Randomising: Adding arbitrary requirements to a test.

Consider a test of two simple hypotheses. If the critical region, R, is not based
strictly on the likelihood ratio statistic (i.e. is not of the form: {x: LR(x) <k}, for
some k), then the critical region is arbitrary with respect to the error probabilities «
and S, that is, some other critical region(s) will yield the same error probabilities. In
such a case, even if R is most powerful, it is not uniquely so. In the context of two
simple hypotheses, such a test is in breach of the sufficiency principle because the
likelihood ratio statistic is sufficient on a binary parameter space, and if R is not of
the form given above, then 3x,, X, : LR(X,) = LR(X,) and x, € R, x, ¢ R, that is, two
observations giving the same value of a sufficient statistic nevertheless produce
different inferences.

A test of this kind is sometimes used in order to obtain a conventional significance
level, say 5%, when the likelihood ratio statistic (and usually also the natural statistic,

X ) is discrete.

Example 6.1

Suppose X ~ Bin(5, p) and we want to test H: p =1 against K: p=2 at the 5% level.
The null and alternative distributions of X , and the likelihood ratio of each value of
X, are shown in table below. (Note that small values of the likelihood ratio (e.g.

-2 and £) are associated with large values of x (5and 4).)

! Stuart et al., p.174.
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Table 6.1

X 0 1 2 3 4 5
1 5 10 10 5 1
P (X) % |m |% |m |= |=
1 15 90 270 405 243
P (X)

1024 1024 1024 1024 1024 1024

P, (x) | &2 32 32 32 32 32

1 3 9 27 81 243
P (X)

LR(x) =

The significance level for the critical region, {x: LR(x) < 2&}={x =5}, is 4 <5%,

while the significance level for the critical region, {x: LR(x) < ¥} ={x=4 or 5}, is
= >5%. No value of k for a critical region of the form {x: LR(x) <k} produces a

significance level of exactly 5%.

We can solve this problem by using a ‘randomised test’, which introduces a device
capable of producing an event with a probability of 12%. Let V be any random
variable, independent of X , such that P(V =v*)=0.12, for some v*. If we use the
rejection rule: ‘reject H if {x=5} or {x=4 and v=v*}’, the significance level of

the test is:

P, (X =5)+P, (X =4)-P(V =v*) =L +(0.12x-5) =5%.

There is something very unsatisfactory about this rejection rule. Although it produces
the required long run failure rate, it does so by making the inference critically
dependent on the observation of an irrelevant variable, V . This introduces an
element into the definition of the rejection region over and above that which can be
described in terms of the likelihood ratio of the data. We can see that this is in breach
of the sufficiency principle (for any parameter space ® < (0,1) ) because the two
observations {x =4,v=v'} and {x = 4,v =v*} result in different inferences even

though x is a sufficient statistic for p and is the same in each case.

This approach may make sense in some quality control environments but not when we
are interested in evidence, since {x =4,v=v'} and {x =4,v =v*} contain exactly the
same evidence about the relative status of any two hypotheses about p . It was for

this reason that Birnbaum regarded the frequentist ‘confidence concept of statistical
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evidence’ as necessarily incorporating “the sufficiency concept, expressed in the

general refusal to use randomised tests”.?

6.3 Both analyses of the Uniform model are wrong.

Let us return to the Uniform example. There are two distinct problems with this
example; one is the existence of an unrecognised and unintentional arbitrariness
identical to that produced by the use of randomising devices, the second is that the
choice of significance level is often inappropriate and introduces a bias into the
procedure as well as reducing the success rate unnecessarily. These issues only
become apparent when we look at tests of two simple hypotheses, however their
implications flow through to tests of composite hypotheses and confidence intervals
(as shown below). The problems occur regardless of which type of inference —

conditional (on r) or unconditional — we use.

X,,..., X, are independent and identically distributed Uni (6 —%,6+3) random
variables. An optimal hypothesis test, at significance level « , will have a rejection
region that maximises the power of the test; in the process it produces conditional
significance levels that vary with r, sometimes higher and sometimes lower than the
nominal level «. By contrast Fisher’s method uses a rejection region where all the
conditional significance levels, ¢, , are individually equal to « (and thus the overall
level also equals « ) but which, as a result, has slightly lower overall power than the
Neyman-Pearson test. When « =0, the two approaches produce the same rejection
region since each of the &, values must also be equal to zero. This is also true for
interval estimation; the Neyman-Pearson 100% confidence interval and Fisher’s

100% interval are both equal to (9+1(1-r)), the conditional coverage being 100%

for all r as well as overall. This is the shortest interval that is certain to contain 6.

2 Birnbaum, A. (1970). Statistical methods in scientific inference, Nature, 225, p. 1033, quoted in
Giere, p. 9.
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(All the technical details that follow are for the case n =2 although the issues

discussed arise forall n.) Foratestof H:0 =6, versus K:0=6, (6, >6,, WLOG)

where n =2, the optimal, level «, Neyman-Pearson rejection region is

6,+31-r), r>Jo

(m’r):m>{el+g(1—r)—(ﬁ—r), r<Ja.

Fisher’s rejection region, based on the distribution of M conditional upon the

observed r is

m:m>[6,+3(1-r)-al-r)].

The characteristics of each test are somewhat dependent on how far apart the

hypothesised values are, that is, on A =6, -6, >0. We assume that « >0 is a fixed

value; the value of « used in our diagrams is 5%.

First consider the case where the hypothesised values of & are sufficiently far apart
that the supports either do not overlap or overlap by a region with a probability of less
than « . (The probability of any part of the intersection of the two supports is the

same under both hypotheses.)

Large A, unconditional (NP) test.

In the following diagrams, the acceptance region has no grid markings; the
remainder of the union of the two supports constitutes the rejection (critical)

region.
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Figure 6.1

Optimal rejection region.
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This test has the following features:

The a-sized part of the rejection region, which is in the null support (i.e. the

support of (M, R) under H), is arbitrarily chosen. If we replaced it with another area

of the same size in the support under H, it would not affect either of the error
probabilities; it follows that we could find a rejection region with the same optimal
error probabilities to include (or exclude) any particular data point in the support
under H.

The probability of the Type Il error, 3, is zero (power of 100%) whereas

a > 0. Inasymmetric case like this, it follows that the test is biased in favour of K.

The power is 100%. Usually, reducing « will reduce the power as well, but
not in this case. We could reduce « to zero and still have power of 100%; thus, no

matter what level of (relative) importance we attach to « and £, itis clear that using

a positive « is inefficient, that is, « is unnecessarily large. Reducing « to zero will

remove the bias, remarked in ii, at no cost.

The test rejects H in favour of K when (for instance) (m,r)=(0.9,0.1) (see

Figure 6.1). This is worse than merely rejecting H when the data is more consistent

with H than with K (as previously observed when g < «); this data simply cannot
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occur if K is true; observing this data, we know that H is certainly true yet we reject H

because of it.

The supports shown in the diagram above do not overlap at all; if they overlap
by an area with probability less than « , i.e. with probability of -6 (6 >0), then
the same points apply with the following modifications: (i) the J-sized part of the
rejection region is chosen arbitrarily, (ii) remains unchanged, (iii) we can reduce the
significance level from « to a —d while retaining power of 100%, this will reduce

the bias in favour of K, (iv) still true for data in the 'S part of the rejection region.

Large A, conditional (Fisher) test.

Figure 6.2
Conditional rejection region.
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The test conditional upon r (see above) has the same unsatisfactory features detailed

above for the Neyman-Pearson case; simply replace «, f and power with «,, g, and
conditional power in the discussion. The data (m,r) = (0.8,0.4) (shown above) can

make the required point in (iv).
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Small A, NP test.

Now consider the case where A is small, i.e. the hypothesised values of & are

relatively close together.

Figure 6.3

Optimal rejection region.
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Again the critical region is arbitrarily defined; the «-sized part of the rejection region
in the null support could equally have been sited anywhere in the overlap area, which
is larger, without affecting either of the error probabilities. As in the previous case,
the highest power test is not unique — we could choose from an infinite number of
them. The rejection region usually quoted (shown above) may seem reasonable

because we are used to having the rejection region for a right-sided test (&, > 6,) on

the right side of the null support; this often produces a unique most powerful rejection
region, but in this case it is only one of many. This happens because of features
peculiar to the Uniform model: x =0.5 is ho more consistent with a Uni(0,1) than

isx =0.98, even though the first value is at the centre of the distribution and the latter
is close to the edge; the uniform likelihood does not rise as we move closer to the
centre as so many other densities do. It is important to emphasise how unacceptable
this arbitrary element is; two analysts using exactly the same data (and same « ) can
quite validly make opposite inferences simply by choosing to use different rejection
regions, and both of them can call their test *‘most powerful’ because no other test of

the same significance level is more powerful.
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Small A, conditional test.

Figure 6.4

Conditional rejection region.
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These comments also apply to the conditional test when it comes to most of those
values of r associated with the area where the supports overlap. If
r<(@-A-a)/@-a), then (under H) m can only take values in the interval

(6, £3(—r)), part of which is in the acceptance region and part in the rejection

region. That proportion of the interval for which we reject H could be placed
anywhere within the overlap interval, (6, —4(1-r),6, +5(1—r)), without changing

a, or S —itdoes not have to be on the extreme right of the interval as in the region
shown above. For example, when r =0.1, the rejection region for m is [0.905,
1.550], of which [0.905,0.950] is in the null support; this interval could be replaced by

an interval of the same width anywhere within [0.65,0.95] without changing either of

the error probabilities.

The conditional test also has a problem not present in the Neyman-Pearson test when
A is small. Part of the rejection region associated with larger r lies completely
outside the support under K, encouraging us to reject H when we see data proving that

H is true (e.g. data (m,r) =(0.69,0.6) in the above plot); for the Neyman-Pearson test

this only happens when A >1-+/a , but for the conditional test it is a problem for
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some r, no matter what the values of « and A(>0) . It also follows that, for many
values of r, we could reduce «, to zero without increasing 4, ; it would seem to be a

requirement of any reasonable methodology that «, =0 in such a case.

These problems have some unpleasant implications for interval estimates as well as
tests. We will consider only the interval estimates conditional on r, now widely

regarded as superior to the unconditional intervals.

Confidence intervals conditional onr.

Conditionalon R=r, M ~ Uni(@+1(1-r)). Based on this, we can find the
conditional 100% confidence interval for 8, C,,,(m)=(m=1(1-r)), which has a
width of (1—r) (and is the same as the 100% unconditional confidence interval for
@). Conventionally (and in accordance with the conditional rejection region for
positive a examined above)®, the conditional 90% confidence interval is defined as
(m+0.45(1-r)), i.e. itis the central nine-tenths of C,,,(m). However any interval of
the same width, lying entirely within C,,,(m) — not necessarily in the centre — will
also have coverage of 90%. More generally, any interval within C,,,(m) of width
(1—a)(@-r) has coverage of 100(1— «)%, and any union of disjoint intervals all
within C,,,(m) having a combined width of (1-«)(1-r) also has total coverage of
100(1—- )% . Itis impossible to choose between these options on the basis of either

width or coverage. If all these intervals (and even unions of intervals) are considered
valid — and there is no statistical basis for preferring any one to another — it follows

that any point in C,,,(m) can be included in or excluded from a valid confidence

interval of any coverage less than 100% purely on the whim of the analyst. Only when

a =0 is there a unique shortest* interval with the specified coverage, namely

Cioo (m).

® See, for instance, Welch (1939), uncontested in the subsequent literature.

# Usually intervals are required to be ‘shortest on average’; since we are conditioning on I it is not
appropriate to average over data with differing ranges, averaging over m (for a given range) is
redundant since all these intervals have the same width.
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Views on randomisation vary, but conditional inference has, from the time of Fisher
onwards, always been discussed in the context of evidential inference; the aim is to
extract all the relevant information from the data, not merely achieve predetermined,
low error rates (see Fisher, Cox, Pratt, and Birnbaum, for example); this rules out
methods with random components. The proponents of conditional inference would

not have approved of this inference had they been aware of its arbitrary attributes.

6.4 Using the likelihood ratio statistic in the Uniform example.

To understand what is going wrong, we need to look at the likelihood ratio statistic,

LR(X). Foreach x; (i=1,...,n), the density, f(x#), is either one or zero under the
uniform model, so the likelihood (joint density) of (x,,...,x,), L(x;6) = H f(x.;6),
i=1

can also only take the values one or zero. The likelihood is one only when
0—-%<X,....X, <@+% or, equivalently, when -3 (1-r)<m<6&+%(1-r). Since,
forany &, the likelihood of x can only take these two values, there are at most four

possibilities for the likelihood ratio® of any x: 2, 2=0, 1 =0, and 1=1. The first

of these indicates that the data we have observed cannot occur under either
hypothesis; assuming that either H or K is true (or that we do not test H against K
when it is clear that neither is true), we may rule this out. It follows that the
likelihood ratio statistic is a discrete variable taking only three values even though the
original X variables are continuous. This explains why a seemingly reasonable
critical region was arbitrary; when the likelihood ratio statistic is discrete, only a
limited number of «- values can be used without resorting to the equivalent of a

randomising device, however unconsciously.

* 2 and % are both formally undefined. The first we can exclude for the reason given below, the

second we interpretas oo i.e. lim<, where & — O from above, since likelihoods are non-negative.

&0

The actual value assigned to the likelihood ratio is important (for our purposes) only up to their
ordering; clearly, for any 0 < & <1, the value % >1>0.
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We can consider the likelihood ratio as a function of (m,r), instead of as a function
of x, since (m,r) is a sufficient statistic. The diagram below shows the likelihood

ratio as a function of (m,r) for the hypotheses H: & =0.5 versus K: 8 =1.1.

Figure 6.5
Value of the likelihood ratio of (m,r).
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The areas in the (m,r)-plane corresponding to the three different likelihood ratio

values are labelled A, B and C. When « > 0, the conditional rejection region always
contains part, but not all, of A, and it often contains part, but not all, of B as well. (B
will not exist if A is large enough.) The unconditional rejection region

(a > 0) contains either part, but not all, of B (when A is small) or part, but not all, of

A (when A is large). (Only in the very specific case A =1-+/a canthe
unconditional rejection region be described in terms of values of the likelihood ratio
statistic, this is a special case of option “a’, discussed below.) A rejection region of

the form {(m,r): LR(m, r) <k} would include (or exclude) all of any area of constant

likelihood ratio. When we use the conventional critical regions, described above, we
reject or accept H partly on the basis of features of the data over and above the
likelihood ratio. The part of B that is included in the rejection region is chosen on a
basis that is arbitrary with respect to the likelihood ratio, and therefore also with
respect to the error probabilities; this is why we could change it without changing the

error probabilities. One of the results of this is that, although no other test at the 5%
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(conditional or unconditional) level has higher power (conditional or unconditional)
than these tests, the tests are not uniquely most powerful. Any part of A that is
included in the rejection region is also arbitrarily chosen and adds to the value of «

without adding anything to the power.

We can get rid of this arbitrary quality by basing our rejection region strictly on the

value of LR(m,r). Since the likelihood ratio can only take three distinct values, our
choice of rejection rules (and « or ¢, ) is very limited; we should reject H when the
likelihood ratio is ‘small” and it only remains to decide how small, i.e. which value to

use as the cut-off value, k. The likelihood ratio statistic can only take the values

0,1 or oo ; we can rule out using oo as the cut-off value, not (according to frequentist

reasoning) because it is so large (although it is), but because it would produce a

significance level of 100%. There are two other options.

Rule (a): Reject H whenever LR(m,r)<1, i.e. when (m,r)eBuC.

In this test, we reject H whenever it is possible that K is true. The power of the test is

100% (B =0) and the test is unique in achieving this power for the given significance

level; it is therefore uniquely optimal in the Neyman-Pearson sense. However, the

significance level, &, depends on A, and is given by:

(1-A)°, 0<A<1
0, A>1.

This will be greater than 5% whenever A <1-+/0.05 = 0.776; for instance, if A=0.5,

the significance level is 25%.
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The conditional significance level, «, , is

@-A)-r
@-r)
0, (r,A) e{(1-A,)x(0,)}{[0,1]x[1,)}.

, (r,A)e{[0,1-A)x(0,1)}

Since this varies with r, the test is not Fisherian. We can still calculate the
conditional probabilities if we believe them to be more relevant; the conditional
power is 100% for all r. The conditional significance level will be greater than 5%
whenever A <1 and r <1-(A/0.95). For instance if A=0.5 and r =0.3 then

a, =40%.

Clearly there is a problem with using this rejection region; whether or not we
condition on r, our significance level will often be unacceptably high. Since the

power is always one (S =0) but « (or «,) is frequently positive, we can see that this

test is often biased in favour of K and never in favour of H. We should consider using

the alternative cut-off value for the likelihood ratio.

Rule (b): Reject H whenever LR(m,r)=0, i.e. when (m,r)eC.

This test tells us to reject H whenever H cannot possibly be true. The significance
level of the test (conditional on r or unconditional) is zero VA. This is a better test
than option “‘a’ because the significance levels (of all kinds) are zero (thus we call it
the zero-level test); the test is never biased against H (from either a conditional or
unconditional point of view). The rule, Reject H whenever (m,r) e C, satisfies the
requirements of both the (unconditional) optimal Neyman-Pearson test and the
(conditional) Fisherian test; the former, because it has the (unique) highest power of

any a =0 level test, and the latter, because the «, values are all the same (zero), and

the conditional power values are optimal for each r. However, the test still has both
conditional and unconditional features, and we may ask which are more relevant. To

answer this, we need a context. Clearly, there are circumstances (for instance, some
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quality control situations) where the individual values of £, may not be important,
but the average, £, is. However, for the purposes of this discussion, we assume that

we are primarily interested in identifying those measures that help us answer the
question “What does the data-set say about the evidence for the hypothesis H relative
to K?” Below we give the formulae for the conditional and unconditional probability
of Type Il error; by looking at some specific cases, we may be able to assess which of

these measures is more informative for our purposes.

Comparison of conditional and unconditional error probabilities

for the zero-level test.

The unconditional probability of Type Il error, £, is given by:

. (1-A)°, 0<A<1
0, A1

The Type |1 error probability conditional upon r, £, , is:

@-A)-r

ﬂr = (1_ r)
0, (1 A) {(L— A1) x (0,13 [0, 1] [L, o)}

, (r,A)e{[0,1-A)x(0,1)}

We can check that g is the average (over r) of the S. values, as follows.
1-A
E(Be)= [ B fa(r)dr
0

_ra=N-r
= ! T 2(1—r)dr

=(1-A)%
This test is never biased in favour of K; it is sometimes biased in favour of H and
sometimes unbiased. Which tests we think are biased depends on whether we take the

conditional or unconditional point of view. From the unconditional point of view, the
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test is biased in favour of H when g >« =0. This happens whenever the two
supports overlap, i.e. when B = &. Otherwise the test is unbiased and o = =0 so

we can tell with certainty which of the two hypotheses is true; you would expect to be

able to do this when the two supports do not overlap.

From a “conditional on r’ point of view, the test is biased in favour of H only when
B, >a, =0, where r is the value of R observed in the experiment. This happens
whenever the two supports overlap at the r level, i.e. when a horizontal line at height
r passes through B. Otherwise the test is unbiased and «, = 8, =0. This
requirement is not as strong as B =, yet, since we can tell with certainty which
hypothesis is true when our data is of this form, it seems clear that the conditional
version of power is the superior measure. To illustrate this, consider the test of
H:6=0.5 versus K:8=1.1 (A=0.6). Suppose that we observe r =0.75 (see Figure

6.5 above); any value of (m,0.75) that we could possibly observe (under either
hypothesis) completely rules out either H or K; thus the ‘relevant’ error probabilities
are surely zero. The conditional values («,.; and f,,;) are both zero, whereas the
unconditional g is P, (B) =16% — a fact that is clearly irrelevant. Does the
conditional power always work as well as this? Consider the data point
(m,r)=(0.8,0.25); this point is in area B and, thus, not in the rejection region so we

accept H; the conditional power when r =0.25 is 80% which is high enough for us to
consider that this data tends to support H over K to some degree. However,
examination of the diagram suggests that the data is equally consistent with the two

hypotheses; we will return to this point later.

The confidence interval.

The confidence interval that corresponds to the test that rejects H if and only if
LR(m, r) =0 is the 100% interval for &: (m+<52). The uniform case is unusual in

having a meaningful 100% confidence interval and this interval is produced by both

the Neyman-Pearson and Fisher approaches, that is, they agree about the 100(1— «)%

interval when o =0. These intervals have the shortest average overall length of any
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intervals with a 100% success rate, and this is equally true when we confine ourselves
to looking at (long-run) data for any particular R =r. Note that there is no
disagreement between the formal coverage or confidence level of this interval and
what we know about its properties (as there was with the 90% unconditional
intervals); it contains 100% of the possible values of & and is indeed called a ‘100%

confidence interval’.

6.5 Using a ‘better’ ancillary statistic for the Uniform case.

We have illuminated a number of issues by going directly to the likelihood ratio
statistic; is there any other approach that is similarly edifying? In this section we
show that the appropriate inference becomes obvious if we condition on an alternative
ancillary statistic that has the Fisherian structure for the binary parameter space

0, ={6,,06,}.

A Fisherian ancillary statistic on the binary parameter space.

A Fisherian ancillary statistic® is any statistic A such that S = (A, 63) where A has the

same distribution V8 € ®, S is minimal sufficient for 8 ®, and 0 is a maximum
likelihood estimator (MLE) of 6 €©.

When we are dealing with a binary parameter space, the likelihood ratio statistic is the
minimal sufficient statistic for @ in that space. In the Uniform case, the likelihood
ratio statistic is a discrete statistic taking only three values (see Figure 6.5 where it is
shown as a function of (m,r)); (M,R) is not minimal sufficient for this parameter
space since it discriminates unnecessarily between data points with the same
likelihood ratio value. Since LR(X) is minimal sufficient, so is its natural logarithm:
In{LR(X)}. The maximum likelihood estimate, a function of the data X, is also

dependent on the nature of the parameter space since it is that value of & in the

® Fisher (1956), Basu (1963).
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parameter space for which the likelihood L(x;&) is maximum. When we are
considering the parameter space R, the MLE is not unique but M is the unique
unbiased MLE. When we are considering the parameter space ®;, the maximum
likelihood estimator, é()g) , Is whichever one of the parameter values has the higher
likelihood given X . Since LR(X)=L(X;8,)/L(X;8,), it follows that the maximum

likelihood statistic can be written as:

6, ifLR(X)>1

ox)=1 "
6,, ifLR(X)<1.
If LR(X) =1, the likelihood is constant over ®, and it is pointless to talk of a

maximum or even maxima.

Consider the statistic (A()g),é()g)) where A(X) = In{LR(X)}|. Since LR(x) can
only take the values 0, 1, and «, In{LR(x)} can only take the values —oo, 0 and «

and A(x) can only take the values o and 0.

Table 6.2

(A(x),0(x)) | IMLR)Y
(0.%) 0

(0,6, =

(©,6,) oo

There are three distinct values of both (A(x), é(g)) and In{LR(x)}, in a one-to-one

correspondence with each other, hence (A(g),é(g)) is a one-to-one function of

In{LR(x)} and is thus a minimal sufficient statistic for 6 € ©; .

It is easy to show that A is an ancillary statistic on ®;. Note that (M, R) is still
sufficient for 8 € ®;, even though not minimal sufficient, hence LR(X)=_LR(M,R)
and P(A=0)=P{LR(X)=8=P{LR(M,R) =1}= P{(M,R) € B}. This probability
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is the same under both hypotheses (i.e. for both 8 € ®,) — see Figure 6.5. Since A is

dichotomous, it follows that it is ancillary over ®, and, since A and 0 together

comprise the minimal sufficient statistic, it follows that A is a Fisherian ancillary

statistic on ®; (as well as satisfying Cox’s requirements). Thus, according to Fisher’s

theory, we should condition on the observed value of A when carrying out tests on
0ec0y.

Interpreting A as a precision index.

The statistic A has a simple intuitive interpretation. Consider the distribution of the

raw data-values X,. We are sampling randomly from a distribution which is either
Uni(6, £3) or Uni(g,+3). If the two distributions do not overlap, we should be able

to tell (from any data), with absolute certainty, which is the true hypothesis. Neither
maximising the power nor conditioning on r made this automatic; in both cases the
conventional choice of positive « seemed reasonable but made it difficult to interpret
the evidence correctly. The situation should be quite straightforward even when the

distributions do overlap. The X, variables have one density or another as shown in

the diagram below.

Figure 6.6

Densities of X under H and under K.

—————n
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In such a case, any data vector will either be completely informative regarding the two
hypotheses or completely uninformative. For example, consider again testing

H:6=0.5 versus K:0=1.1. Under H, X, ~ Uni(0,1) whereas under K,
X, ~Uni(0.6,1.6). If all the data falls in the overlap interval, [0.6,1.0], the two

hypotheses are equally consistent with the data and we are none the wiser for
observing it. On the other hand, if not all the data is in the overlap region, we know
with certainty which of the two hypotheses is true’. The statistic, A, distinguishes
between these two cases: A(X) =0 indicates that all the x’s are in the overlap region
and the data is completely uninformative, while A(x) = o indicates that they are not
all on the overlap interval and so the data is completely informative. For the example
above, A(x)=0 if and only if all the x’s are in [0.6,1.0]. (It is now easier to see that
A has the same distribution under the two hypotheses.) It would seem that A is the

ultimate ‘precision index’ for the test, even more so than R.

(The statistic A is similar to that which we used as a precision index in the Binomial
case. In that case, such a statistic existed for only a limited range of hypothesis pairs,
in contrast to the present case. In both cases, the absolute value of the natural

logarithm of the likelihood ratio statistic is an ancillary statistic on ®;.)

Conditioning on A=[InLR(X)].

What happens when we condition on the observed value of A? Again we will use the
sufficient statistic (M, R) in preference to the data vector X . Having observed

A =a we should base our tests on the conditional distributions (under H and K) of
(M,R) given A=a.

" We are not considering the further possibilities that the data shows that (i) neither hypothesis can be
true, or (ii) the underlying model assumptions are incorrect. Were the first situation to arise, we could
discontinue the test of those particular hypotheses. The assessment of an inference procedure is usually
made on the assumption that the specified model is correct.
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(1) When A=0 ...

When we observe that all our observations are lying in the overlap region, we have

observed A=0. Conditional upon this being so, (M,R) must lie in the area we

called ‘B’.

Figure 6.7
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The support of (M, R) (under H or K), given that A=0, is shown above. The density
is the same under both hypotheses and varies with n; when n=2 the density is
constant, f,,(m,r)= f.(m,r)=12.5 over this area. Since (M,R) has exactly the

same conditional distribution under H and K, it is not informative regarding these two
hypotheses. Although this is obvious from a common sense point of view, neither of
the previous approaches that we examined revealed this fact. If we insist upon
defining a rejection rule, there are only two options open to us: either we reject H

when we observe any (m,r) in this region, in which case the conditional significance
level, a,_,=100% as is the conditional power ( 5,_, =0), or we accept H for all
(m,r) in this region, in which case «,_, =0 as is the conditional power

(and S,_, =100%). In other words, since there is no basis whatsoever for

distinguishing between different parts of this area we must either accept or reject H
throughout the area and one of the error probabilities will be 100% while the other is

zero. We might choose to let «,_, be zero in the interest of keeping the test biased in

favour of H rather than in favour of K; this means that we will always accept H when
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(m,r) isin this region, but the fact that the conditional power is zero means that we
cannot read anything into our failure to reject H. This brings us, rather laboriously,
back to the fact that was obvious, namely that we can infer nothing useful from this
type of result vis-a-vis H and K. Note however that the sheer irrationality of using
any value of « other than zero (or possibly 100%) is obvious once we have
conditioned on A=0; this was not the case when we did not conditional nor when we

conditioned on R. The same is true when we observe A=oo0.

(i) When A=w ...

The supports of (M, R) under H and under K conditional upon A= are shown

below.
Figure 6.8
0.1 0.3 05 0.7 0.9 1.1 1.3 15
1.00 [ T 1T T T T 1T T T T T T T
0.75 — =
050 — 1
r H K

0.25 —— =

0.00 N A

The white areas of the diagram are not part of either support — the supports do not
overlap. Since this is the case we can tell with absolute certainty which is the true
hypothesis by observing whether (m,r) lies in the support under H or the support
under K. Thus we reject H if and only if (m,r) lies in the support under K and hence
not in the support under H; for this test the conditional error probabilities are

a,_, = P, =0, consistent with the fact that, in these circumstances, the result of the

test cannot be wrong. Again it is instantly obvious that the only appropriate

significance level is zero.
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If we want to define an accept/reject rule for data based on a fixed sample size (rather
than optional stopping), the obvious course is to set both the conditional significance

levels, a,, equal to zero. The resulting test is the zero-level test discussed in 86.4 and

the analogous confidence intervals are the 100% intervals.

Which power is most relevant?

For this test, all the significance levels — conditional (whether upon R or A) or
unconditional — are zero. However the various versions of power are not all the same;
the power conditional upon the observed value of A is the one that gives us the best

idea about the evidence contained in the data.

Our rejection region is that labelled ‘K’ and filled with the darker colour in Figure
6.8. The unconditional approach described the power of this test as

84% = P, [(M,R) € rejection region]. The power conditional upon R depends on the

observed value of r, for instance if r =0.25 then the conditional power equals
P.[(M,R) € rejection region | R =0.25]=80% , whereas if r =0.5 then the

conditional power is 100%. The power conditional upon A depends on the observed
value of a, if a=0 and the data is uninformative, then the conditional power is zero,
whereas when a =oo and the data is completely informative, the conditional power is

100%. Let us consider a particular observation.

The observation (m,r) =(0.8,0.25) is in the overlap area, which means that its

occurrence does not help us to choose between H and K. It is not in the rejection
region, so we will not reject H; how much can we read into this fact regarding support
for the hypothesis H? The unconditional power and the power conditional upon

r =0.25 are (respectively) 84% and 80%. We remarked earlier that this gives the
counter-intuitive impression that the data favours H somewhat (since with high power
we would expect to reject H if it was false). Let us consider this question from the
‘conditional upon a’ point of view. We have observed the event A=0 but this was

equally likely to occur under either hypothesis so we can infer nothing from it; the
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power conditional upon A =0 is zero, which means that we should infer nothing from
our failure to reject H. The alternative values of 84% and 80% are utterly misleading.
In fact the unconditional power and the power conditional upon r are each the
average of two values, one of which is completely irrelevant. Consider the value 80%
which is the power conditional upon r being equal to 0.25. When r =0.25, we can

distinguish between two cases with respectto A: either (m,r) is in the overlap area

or it is not. The power conditional upon both (i) R =0.25 and (ii) data in the overlap
area (i.e. A=0)is:
P.[(M,R) e rejection region |(R=0.25& A=0)]=0.

By contrast the power conditional upon both (i) R =0.25 and (ii) data not in the
overlap area (A=) is:
P.[(M,R) € rejection region |(R=0.25& A=0)]=100% .

Now, when r =0.25, the probabilities of A being zero or infinity are 0.2 and 0.8
respectively®, and the power conditional upon R being 0.25 can be seen to be the

average of the two conditional® powers weighted according to their probabilities, thus

P.[(M,R) € rejection region | R =0.25]

=P.[(M,R) e rejection region |(R=0.25& A=0)]xP,(A=0|R=0.25)+
P.[(M,R) e rejection region |(R=0.25& A=)]xP, (A=w|R=0.25)
=(0%x0.2) + (100%x 0.8)

=80%.

If we condition on R but not on A, the power will be the average over both the
possible values of A, yetin any given case A must be either zero or infinity. Ifitis
zero, why should a failure-rate for the * A=o0’ case play any part in our assessment,
and if it is infinity, why should we be influenced by a value relevant only

when A=07?

¢ Aand R are not independent.
® That is, conditional upon A in additionto R.
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Should we condition on both R and A? We have just shown that conditioning on R
alone is inadequate — when we condition on A, as well, it makes a striking difference
and brings our inference into line with common sense. Can we condition on A alone
or do we also need R ? In the numerical example above, the power conditional on A
alone was either zero or 100%. This was also true of the power conditional upon A
and R=0.25; is R always redundant once we have conditioned on A? The answer

is yes and this can be shown in general as follows.

Since the significance level is zero (overall and also for any ancillary subset based on
R and/or A), we need only consider how the power of the test is interpreted. The
power conditional on both R and A is given by

power(r,a) =P [(M,R) e rejection region |(R=r& A=a)]

Now,
power(r,«) =P [(M,R) e rejection region |(R=r& A=w)]
=100%
= power(a = ),

since, when A= and K is true, (M, R) must be in the rejection region no matter

what the value of r.

The event A=0 can only occur if A<1 and r <1-A, in which case

power(r,0) = P, [(M,R) € rejection region |(R=r & A=0)]
=0
= power(a =0),

since (M,R) e rejection region implies that A= .

Thus, for all a and r the power conditional upon A=a and R =r is the same as the
power conditional upon A=a alone; once we have conditioned upon A,

conditioning upon R is redundant.
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We can see that, while the traditional approach to conditioning using the ancillary
statistic R and a positive value of « is misleading, conditioning can still play a part
in helping us to understand the problem. Although R is ancillary, conditioning upon
it does not help us to understand the important features of this model; it does not
reveal the problems inherent in using a positive ¢ and, even when « =0, the power
conditional upon r is still misleading. By contrast, if we condition on

A; =l InLR(X;6,,6;)|, whenever we want to test 6, against &, , the problems and

solutions immediately become apparent. In one way, this is a more complex
procedure since, unlike R, A; has to be re-defined for every pair (6, 6;) (order not
important). Nevertheless, this approach illuminates the issue of confidence intervals,

as well as tests, since it shows that the 100% confidence interval is the only

appropriate interval to use.

Using A, to understand the Uniform confidence interval.

This does not mean that the value of R has no significance; it is true (as Lehmann
said) that, when r is large enough, you can virtually pinpoint the value of &, but this

can be understood in terms of the relationship between R and the statistics A;. The

100% confidence interval for @ e R is C,,,(m) = (m+£") , which has a width of
(1—r). Any value of @ outside this interval cannot possibly have produced the
observed data; any value within is consistent with the data, but between any two

values of & (say, 6, and ;) both lying within the interval we can make no

meaningful judgement on the basis of the data. We cannot narrow the interval to
(say) a 90% interval in order to see if one of the values drops out because such an
interval would be completely arbitrary and we could equally well justify using a
different interval which reverses the preference between the two @’s. This is

consistent with the fact that A;(m,r) =0 for any two values (&, & ;) both within the

100% interval. The larger r is, the narrower C,,,(m) is, and this has implications for

the ‘number’ of hypothesis pairs for which the data is decisive, i.e. able to distinguish

the true hypothesis. For example, suppose that r =1, then C,,,(m) is m*++ and
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whenever two hypothesised values are more than half a unit apart, (at least) one of
them must be completely inconsistent with the data; if r is larger, say ¢, then
C,p(m) is m*55 and whenever two values are at least one-fifth of a unit apart, we

will be able to make a confident judgement between them. A large value of r
narrows down the range of possible & values, but it is going too far to say that we
will get more information about &, relevant to any context, when r is larger. For
choosing between given & and 6,, even data with a very small range can be perfectly
informative if one or more of the observations lies outside the overlap area;
alternatively, if A is small and there is a large overlap between the two supports, even
data with a fairly large range may fail to give us any information that will help to pick
the correct hypothesis. As an ancillary statistic, A; is superior toR because, in any

given context (i.e. for any pair of hypotheses), it perfectly distinguishes between

informative and uninformative data.

Once & and 6, are fixed, we are faced with only three situations:

i. We can dismiss both hypotheses because both values are outside C,,,(m).

ii. Both hypotheses are plausible and equally so since both values are inside
C,po(m).

iii. One hypothesis can be rejected in favour of the other with zero error
probabilities because one of the values is inside C,,,(m) and the other is

outside.

We can partition R into two subsets: R\C,,,(m) and C,,,(m); the first contains all

the values that cannot possibly be &, given the data, the second contains all the values
(of @) that could possibly have given rise to the data; this interval is narrower when r
is larger, but given the uniform model, there is no rational basis for preferring any one
of these values over another to even the slightest degree.
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6.6 Gambling on the Uniform example with a better ancillary

statistic.

In Chapter 5 we used the ancillary statistic, R, to find a betting strategy that would
beat the Neyman-Pearson ‘optimal” 90% confidence interval for & in the Uniform
case. This strategy was highly effective and could equally have been used in tests of
simple hypotheses where it would have worked under both H and K. We have argued
that, when we are testing two simple hypotheses, the dichotomous statistic, A, is the
appropriate ancillary statistic on which to condition. We can test this assertion by
finding out if it is possible to use A to create a betting strategy that will beat the
hypothesis test conditional upon R. We look at two cases: first, the hypothesis test

using a, =5% (for all r) with the rejection region on the right side of the null

support (this approach is now widely regarded as the most appropriate for evaluating
evidence — see 84.1 (The uniform example — Part I1)); second, we will use « =0
(since it seems that this is the only appropriate value) and use the betting scenario to
confirm that the power conditional upon a is the most relevant error probability for
this test.

As before, we look at the case n=2 and our two hypotheses are H: # = 0.5 and

K:#=1.1, hence A=0.6<1 and the two supports of (M, R) overlap. A is a function
of (M,R) taking the value zero for (m,r) € B (the overlap area) and the value infinity
for (m,r)e AuC. B=J when r >0.4; insuch a case, A can only take the value
infinity, nevertheless there is still a betting strategy that will work whenever «, >0
(see below); when «, =0 the error probabilities conditional on A are in agreement

with those conditional on R . However, the probability that R is less than 0.4 is 64%);

we will look, first, at the two cases r=% and r =+.
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Testl: r=%, o =5%.

The conditional distribution of M given R =% is Uni(6+$(1-3)), hence Uni (3,2

under H and Uni (£,42) under K. The conventional 5% critical region, conditional on

r, has us reject H whenever m> 6, + (3 —a)(1-r) =3+ (3 —3)(1-3) =%, then when
H is true (and r =) we will reject H only 5% of the time. The conditional power of

this test, «,_,,5,is P.(M >4|R=%)=0.95, hence S _,; =5%.

If we believe that the success rates conditional upon r are the relevant values for
interpreting the result of this test, then we should be prepared to bet that the test result
is right, risking 0.95 dollars to win 0.05 dollars, or equally that the test result is
wrong, risking 0.05 dollars to win 0.95 dollars (these odds work under both H and K

since a, = S, =5% for r =3).

On the basis that the test result is more reliable (in fact, totally reliable) when A=
and less reliable when A =0, we adopt the strategy of betting that the result of the
test is right whenever we observe A =co and betting that the test result is wrong
whenever we observe A=0. (It is more enlightening to talk about betting in favour
of or against the result of the test since this highlights the fact that some data is more
or less informative, but note that this is equivalent to betting about the state of nature
since we can deduce from the data what the test result is, i.e. betting that the test result
is wrong amounts to betting that H is true when the data is in the rejection region, and
amounts to betting that K is true when the data is in the acceptance region.) We
randomly generated 1000 samples under both H and K and the cumulative results of

this betting strategy are shown in the plots below.
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Figure 6.9
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The strategy works exceedingly well regardless of which of the hypotheses is true and

will also work if H and K appear in any proportions p and 1-p (0< p<1). We can

see the details of how the strategy worked by looking at the 1000 samples cross-

classified according to the test result (inference) and the bet (value of a).
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a) R=3, Histrue.

Some of the probabilities associated with this scenario are as follows (r is equal to %,
‘P.” denotes probability conditional on R =r):

" a =5%

= P(A=0)=10%

* P (Resultiswrong | A=0)=50%

* P (Resultiswrong |A=0)=0.

Table 6.3
Result right Result wrong Total
(Accept H) (Reject H)
Bet ‘wrong’ 49 [-0.05] 45 [+0.95] 94
(A=0)
Bet ‘right’ 906 [+0.05] 0 [-0.95] 906
(A=)
Total 955 45 1000

The four probabilities given above are reflected in the respective relative frequencies:
45/1000 = 4.5%, 94/1000 = 9.4%, 45/94 = 47.9% and 0/96 = 0O; the dollar profit made
on each of the four types of result/bet combination is displayed in square brackets in
the table.

b) R=1,Kistrue.

= B =5%
= P(A=0)=10%
* P (Resultiswrong | A=0)=50%

* P (Resultiswrong |A=0)=0.
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Table 6.4

Result wrong Result right Total
(Accept H) (Reject H)
Bet ‘wrong’ 60 [+0.95] 59 [-0.05] 119
(A=0)
Bet ‘right’ 0 [-0.95] 881 [+0.05] 881
(A=)
Total 60 940 1000

The four probabilities are again reflected in the observed relative frequencies:
60/1000 = 6%, 119/1000 = 11.9%, 60/119 = 50.4% and 0/881 = 0.

Test2: r=4%, o, =5%.

For the case r =%, we used the same betting strategy based on the observed value of

a. We still used a conditional (on r) significance level of 5% leading to the rule

Reject H when m > & ; in this case the power of the test is 85% so, under K, if we bet

that the result is right we will either lose 0.85 dollars or win 0.15, and if we bet that
the result is wrong, we either lose 0.15 dollars or win 0.85. The cumulative profits

over 1000 bets are shown below for H and K.

Figure 6.11
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Figure 6.12
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Again we can examine the 1000 samples to see that the strategy worked because of

the conditional (on a) features of the inference procedure.

c) R=%, Histrue.

" a =5%

= P (A=0)=20%

= P (Resultiswrong | A=0)=25%

* P (Resultiswrong |A=)=0.

Table 6.5
Result right Result wrong Total
(Accept H) (Reject H)
Bet ‘wrong’ 147 [-0.05] 49 [+0.95] 196
(A=0)
Bet ‘right’ 804 [+0.05] 0 [-0.95] 804
(A=)
Total 951 49 1000

The relative frequencies corresponding to the four probabilities given above are
respectively: 49/1000 = 4.9%, 196/1000 = 19.6%, 49/196 = 25% and 0/804 = 0.

152



d) R=%, Kistrue.

The probabilities are as follows:
= S =15%
= P (A=0)=20%
= P (Resultiswrong | A=0)=75%

= P(Resultiswrong |[A=0)=0.

Table 6.6
Result wrong Result right Total
(Accept H) (Reject H)
Bet ‘wrong’ 150 [+0.85] 48 [-0.15] 198
(A=0)
Bet ‘right’ 0 [-0.85] 802 [+0.15] 802
(A=)
Total 150 850 1000

These probabilities are reflected in the relative frequencies: 150/1000 = 15%,
198/1000 = 19.8%, 150/198 = 75.8% and 0/802 = 0.

This successful betting strategy, based on a, can be used for any value of r <0.4 (or,

generally, any value of r <1-A where A=|8 -6, |<1). When r>0.4, a=ow

(always) so we cannot bet based on the value of a. However in this case the power
of the test is 100% and since any positive value of « is inefficient, there is a strategy
that will win against (say) a 5% test whenever H is true (and therefore overall as long
as H is sometimes true); simply use the rejection rule for the significance level zero,
and bet for or against H based on this rule, since the power of this rule is also 100%,
you will break even in the long run when K is true and do better than even when H is

true.
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If we use o =0, as seems appropriate for this model, then all the conditional
significance levels will also be zero, but the issue of power remains open. If we reject

H whenever (m,r) e C, should we judge the power of the test as being the power

conditional on the observed value of r or conditional on the observed value of a?
(We have already established that once we have conditioned on a, it makes no

difference if we condition on r as well.) If we use the power conditional on r (x,)

as the value on which to base the odds of the test being ‘right” when K is true, will
this be vulnerable to a betting strategy based on a? This question is only meaningful

when r<1-A and A=[6, -6, |<1, since otherwise x, and x, are the same.

Consider the case where we observe data with a range of 4, we have the same
hypotheses H and K as before. Conditional upon R =%, M ~ Uni(3,{) under H and
M ~ Uni(22,32) under K. We now reject H whenever m> £ in order to have a

40 40

significance level of zero.

Whenever (in a certain state of nature) there is a probability of 7 that the test result is
wrong and a probability of 1—7 that the test result is right, then the following payout

scheme is “fair’ based on these probabilities whenever this state of nature occurs:

I. The punter bets that the result is right, and it is right and he wins 7.
ii. The punter bets that the result is right and it is wrong and he loses 1—17 .
iii. The punter bets that the result is wrong and it is wrong and he wins 1—-7 .

iv. The punter bets that the result is wrong and it is right and he loses 7.

If =0 it follows that the result is always right and the second and third of these

scenarios cannot occur; leaving us with either of two possibilities:
I. The punter bets that the result is right and ‘wins” =0, or

ii. The punter bets that the result is wrong and ‘loses’ 7 =0.
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In other words, when the test result is a certainty (certainly right or certainly wrong)
there are no non-zero payouts appropriate to the long run success rate. For our test
with a =0 this is the case when H is true, so the punter will break even (in any

number of bets) regardless of strategy.

When K is true, n = £ and 1-7 = x (the power). The power conditional upon r is
K1, = P(M >§|R=1%)=80%, whereas the power conditional upon a is

K, =P(M >f| A=a) where
0, =0
K. =
* |100%, a=oo.

As noted earlier, when R =1, the probability of A being zero is 20%, thus we can see
that the value «,_,, is the weighted mean of the power values conditional on the two

values of a, i.e. x, =(0.2xx,)+(0.8xx,) .

Based on «,, our strategy is to bet that the result is right when we observe a =« and
wrong when a=0.

Under K, the result/bet combinations (cells) have the following joint probabilities; the

appropriate payoffs, based on x, , are shown in brackets.

Table 6.7
Result wrong Result right Total
(Accept H) (Reject H)
Bet ‘wrong’ 20% [+0.8] 0% [-0.2] 20%
(A=0)
Bet ‘right’ 0% [-0.8] 80% [+0.2] 80%
(A=)
Total 20% 80% 100%

Thus the expected profit from a bet on a single random sample is:
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(20%x0.8)+0+ 0+ (80%x0.2) =0.32 dollars .

In fact this strategy ensures that the punter will not lose money on any single bet.
Since this same strategy will not lose money even when H is true, it is workable as

long as & € ®,. From this we can see that the relevant power for the test is «, rather
than x,; when A=0 the payouts should be based on x, and 1—x, and when A=
the payouts should be based on «, and 1—-x_, otherwise the odds will be beaten by

this strategy.

In this chapter we have found that, in the Uniform (location) case, we can define
ancillary statistics on the binary parameter spaces (instead of the usual natural
parameter space, R ) that satisfy the requirements of the restricted conditional
principle (and even Fisher’s definition). Binary parameter spaces may hold the key to
extending the scope of conditional inference, including in those common cases where
no ancillary statistic exists on the natural parameter space. In the Uniform case there
is an ancillary on the natural parameter space and yet those produced by the binary

parameter spaces deliver much better results. Conditioning on A; removes and

illuminates the problems that arise when we use either unconditional inference or

inference based on the traditional ancillary statistic R ; we can also argue that A; is

more truly a precision index than is R . This raises the possibility that binary
parameter spaces may produce better results generally; we have already noted (see
Chapter 3) that using composite hypotheses (equivalent to using a parameter space
with more than two elements) means that the question at issue is ill-defined and this
may make it harder to identify precision. Inthe Uniform case it is evidently easier to
identify a clear-cut precision index when we clarify the context of the test by
specifying two simple hypotheses than when we have a large number of hypotheses in
mind; it remains to be seen whether this advantage generalises to a greater range of

cases.
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