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Chapter 6: Welch’s Uniform example re-visited. 
 

6.1 Introduction. 

 

In Chapter 5 we showed that there are some serious difficulties with the application of 

the restricted conditional principle; notably: frequent absence of an exact ancillary 

statistic, difficulty of choosing between competing ancillary statistics, and lack of 

continuity of inference.  We can resolve these problems by adopting the unrestricted 

CP of Birnbaum, but in that case we will need to abandon frequentism altogether and 

adopt the LP.  If we wish to remain within the frequentist framework, we may still 

take the view that Cox’s conditional approach is superior to conventional frequentist 

inference because it excludes an irrelevant part of the sample space.  In view of the 

unsatisfactory nature of many standard unconditional inferences (outlined in Chapter 

3), it makes sense to pursue the conditional option and, in particular, to examine how 

far we can extend its scope while still remaining frequentist.  By re-examining 

Welch’s Uniform example in detail, we are able to identify serious flaws in both of 

the methods used to date; this insight points us in the direction of an alternative 

conditional approach, one that produces superior results.  In later chapters we will 

find that the new conditional approach is applicable to many other, more realistic, 

scenarios. 

 

Welch’s example is valuable because it is a simple case where an ancillary statistic 

(the range, R ) allows us to contrast the unconditional Neyman-Pearson approach with 

the conditional approach of Fisher; the advantages of this were recognised 

immediately. Welch was convinced of the superiority of Neyman’s method and his 

view did not change as a result of studying this example though surely he did not 

study it very closely.  Later commentators looked at the conditional features of the 

confidence intervals and tests and were inclined to support Fisher’s point of view.  

However we believe that both sides of the debate have overlooked some important 

features of the example. 
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We will start by re-stating the connection between Neyman-Pearson critical regions 

and the likelihood ratio statistic, and considering the issue of randomisation. 

 

 

6.2 Randomising: Adding arbitrary requirements to a test. 

 

Consider a test of two simple hypotheses.  If the critical region, ℜ , is not based 

strictly on the likelihood ratio statistic (i.e. is not of the form: { : ( ) }x LR x k≤
� �

, for 

some k ), then the critical region is arbitrary with respect to the error probabilities α  

and β , that is, some other critical region(s) will yield the same error probabilities.  In 

such a case, even if ℜ  is most powerful, it is not uniquely so.  In the context of two 

simple hypotheses, such a test is in breach of the sufficiency principle because the 

likelihood ratio statistic is sufficient on a binary parameter space, and if ℜ  is not of 

the form given above, then 1 2 1 2 1 2, : ( ) ( ) and ,x x LR x LR x x x∃ = ∈ℜ ∉ℜ
� � � � � �

, that is, two 

observations giving the same value of a sufficient statistic nevertheless produce 

different inferences. 

 

A test of this kind is sometimes used in order to obtain a conventional significance 

level, say 5%, when the likelihood ratio statistic (and usually also the natural statistic, 

X
�

) is discrete1.   

 

 

Example 6.1 

 

Suppose ~ (5, )X Bin p  and we want to test H: 1
2p =  against K: 3

4p =  at the 5% level.  

The null and alternative distributions of X , and the likelihood ratio of each value of 

x , are shown in table below.  (Note that small values of the likelihood ratio (e.g. 
32 32
243 81 and ) are associated with large values of x  (5 and 4).) 

 

                                                 
1 Stuart et al., p.174. 
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Table 6.1 

x  0 1 2 3 4 5 

( )HP x  1
32  5

32  10
32  10

32  5
32  1

32  

( )KP x  1
1024  15

1024  90
1024

270
1024

405
1024

243
1024

( )( )
( )

H

K

P xLR x
P x

=  
32
1  32

3  32
9  32

27  32
81  32

243  

       

The significance level for the critical region, 32
243{ : ( ) } { 5}x LR x x≤ ≡ = , is 1

32 5%< , 

while the significance level for the critical region, 32
81{ : ( ) } { 4 or 5}x LR x x≤ ≡ = , is 

6
32 5%> .  No value of k  for a critical region of the form { : ( ) }x LR x k≤

� �
 produces a 

significance level of exactly 5%. 

 

We can solve this problem by using a ‘randomised test’, which introduces a device 

capable of producing an event with a probability of 12%.  Let V  be any random 

variable, independent of X , such that ( *) 0.12P V v= = , for some *v .  If we use the 

rejection rule: ‘reject H if { 5x = } or { 4x =  and *v v= }’, the significance level of 

the test is:  

 51
32 32( 5) ( 4) ( *) (0.12 ) 5%.H HP X P X P V v= + = ⋅ = = + × =  

 

There is something very unsatisfactory about this rejection rule.  Although it produces 

the required long run failure rate, it does so by making the inference critically 

dependent on the observation of an irrelevant variable, V .  This introduces an 

element into the definition of the rejection region over and above that which can be 

described in terms of the likelihood ratio of the data.  We can see that this is in breach 

of the sufficiency principle (for any parameter space (0,1)Θ⊆ ) because the two 

observations { 4, '}x v v= =  and { 4, *}x v v= =  result in different inferences even 

though x  is a sufficient statistic for p  and is the same in each case.   

 

This approach may make sense in some quality control environments but not when we 

are interested in evidence, since { 4, '}x v v= =  and { 4, *}x v v= =  contain exactly the 

same evidence about the relative status of any two hypotheses about p .  It was for 

this reason that Birnbaum regarded the frequentist ‘confidence concept of statistical 
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evidence’ as necessarily incorporating “the sufficiency concept, expressed in the 

general refusal to use randomised tests”.2   

 

6.3 Both analyses of the Uniform model are wrong. 

 

Let us return to the Uniform example.  There are two distinct problems with this 

example; one is the existence of an unrecognised and unintentional arbitrariness 

identical to that produced by the use of randomising devices, the second is that the 

choice of significance level is often inappropriate and introduces a bias into the 

procedure as well as reducing the success rate unnecessarily.  These issues only 

become apparent when we look at tests of two simple hypotheses, however their 

implications flow through to tests of composite hypotheses and confidence intervals 

(as shown below).  The problems occur regardless of which type of inference – 

conditional (on r ) or unconditional – we use.  

 

1, , nX X…  are independent and identically distributed Uni 1 1
2 2( , )θ θ− +  random 

variables.  An optimal hypothesis test, at significance level α , will have a rejection 

region that maximises the power of the test; in the process it produces conditional 

significance levels that vary with r , sometimes higher and sometimes lower than the 

nominal level α .  By contrast Fisher’s method uses a rejection region where all the 

conditional significance levels, rα , are individually equal to α  (and thus the overall 

level also equals α ) but which, as a result, has slightly lower overall power than the 

Neyman-Pearson test.  When 0α = , the two approaches produce the same rejection 

region since each of the rα  values must also be equal to zero.  This is also true for 

interval estimation; the Neyman-Pearson 100% confidence interval and Fisher’s 

100% interval are both equal to 1
2( (1 ))rθ ± − , the conditional coverage being 100% 

for all r  as well as overall.  This is the shortest interval that is certain to contain θ . 

 

                                                 
2 Birnbaum, A. (1970).  Statistical methods in scientific inference, Nature, 225, p. 1033, quoted in 
Giere, p. 9. 
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(All the technical details that follow are for the case 2n =  although the issues 

discussed arise for all n .)   For a test of H: 1θ θ=  versus K: 2θ θ=  ( 2 1θ θ> , WLOG) 

where 2n = , the optimal, level α , Neyman-Pearson rejection region is   

 

 
1

1 2

1
1 2

(1 ),                    
( , ) :

(1 ) ( ),   .

r r
m r m

r r r

θ α

θ α α

⎧ + − ≥⎪> ⎨
+ − − − <⎪⎩

 

 

 

Fisher’s rejection region, based on the distribution of M  conditional upon the 

observed r  is 

 1
1 2: [ (1 ) (1 )].m m r rθ α> + − − −  

 

 

The characteristics of each test are somewhat dependent on how far apart the 

hypothesised values are, that is, on 2 1 0θ θ∆ = − > . We assume that 0α >  is a fixed 

value; the value of α  used in our diagrams is 5%. 

 

First consider the case where the hypothesised values of θ  are sufficiently far apart 

that the supports either do not overlap or overlap by a region with a probability of less 

than α .  (The probability of any part of the intersection of the two supports is the 

same under both hypotheses.) 

 

Large ∆ , unconditional (NP) test. 

 

In the following diagrams, the acceptance region has no grid markings; the 

remainder of the union of the two supports constitutes the rejection (critical) 

region. 
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Figure 6.1 
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This test has the following features: 

 

i. The -sizedα  part of the rejection region, which is in the null support (i.e. the 

support of ( , )M R under H), is arbitrarily chosen.  If we replaced it with another area 

of the same size in the support under H, it would not affect either of the error 

probabilities; it follows that we could find a rejection region with the same optimal 

error probabilities to include (or exclude) any particular data point in the support 

under H.  

 

ii. The probability of the Type II error, β , is zero (power of 100%) whereas 

0α > .  In a symmetric case like this, it follows that the test is biased in favour of K. 

 

iii. The power is 100%.  Usually, reducing α  will reduce the power as well, but 

not in this case.  We could reduce α  to zero  and still have power of 100%; thus, no 

matter what level of (relative) importance we attach to α  and β , it is clear that using 

a positive α  is inefficient, that is, α  is unnecessarily large.  Reducing α  to zero will 

remove the bias, remarked in ii, at no cost. 

 

iv. The test rejects H in favour of K when (for instance) ( , ) (0.9,0.1)m r = (see 

Figure 6.1).  This is worse than merely rejecting H when the data is more consistent 

with H than with K (as previously observed when β α< ); this data simply cannot 
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occur if K is true; observing this data, we know that H is certainly true yet we reject H 

because of it. 

 

v. The supports shown in the diagram above do not overlap at all; if they overlap 

by an area with probability less than α , i.e. with probability of ( 0)α δ δ− > , then 

the same points apply with the following modifications: (i) the -sizedδ part of the 

rejection region is chosen arbitrarily, (ii) remains unchanged, (iii) we can reduce the 

significance level from α  to α δ−  while retaining power of 100%, this will reduce 

the bias in favour of K, (iv) still true for data in the ' 'δ  part of the rejection region.  

 

Large ∆ , conditional (Fisher) test. 

 

Figure 6.2 
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The test conditional upon r  (see above) has the same unsatisfactory features detailed 

above for the Neyman-Pearson case; simply replace ,  α β  and power with ,  r rα β  and 

conditional power in the discussion.  The data ( , )m r =  (0.8,0.4) (shown above) can 

make the required point in (iv). 
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Small ∆ , NP test. 

 

Now consider the case where ∆  is small, i.e. the hypothesised values of θ  are 

relatively close together. 

 

Figure 6.3 
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Again the critical region is arbitrarily defined; the -sizedα part of the rejection region 

in the null support could equally have been sited anywhere in the overlap area, which 

is larger, without affecting either of the error probabilities.  As in the previous case, 

the highest power test is not unique – we could choose from an infinite number of 

them.  The rejection region usually quoted (shown above) may seem reasonable 

because we are used to having the rejection region for a right-sided test ( 2 1θ θ> ) on 

the right side of the null support; this often produces a unique most powerful rejection 

region, but in this case it is only one of many.  This happens because of features 

peculiar to the Uniform model: 0.5x =  is no more consistent with a Uni(0,1) than 

is 0.98x = , even though the first value is at the centre of the distribution and the latter 

is close to the edge; the uniform likelihood does not rise as we move closer to the 

centre as so many other densities do.  It is important to emphasise how unacceptable 

this arbitrary element is; two analysts using exactly the same data (and same α ) can 

quite validly make opposite inferences simply by choosing to use different rejection 

regions, and both of them can call their test ‘most powerful’ because no other test of 

the same significance level is more powerful. 
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Small ∆ , conditional test. 

Figure 6.4 
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These comments also apply to the conditional test when it comes to most of those 

values of r  associated with the area where the supports overlap.  If 

(1 ) (1 )r α α< −∆ − − , then (under H) m  can only take values in the interval 

1
1 2( (1 ))rθ ± − , part of which is in the acceptance region and part in the rejection 

region.  That proportion of the interval for which we reject H could be placed 

anywhere within the overlap interval, 1 1
2 12 2( (1 ), (1 ))r rθ θ− − + − , without changing 

rα  or rβ  – it does not have to be on the extreme right of the interval as in the region 

shown above.  For example, when 0.1r = , the rejection region for m  is [0.905, 

1.550], of which [0.905,0.950] is in the null support; this interval could be replaced by 

an interval of the same width anywhere within [0.65,0.95] without changing either of 

the error probabilities. 

 

The conditional test also has a problem not present in the Neyman-Pearson test when 

∆  is small.  Part of the rejection region associated with larger r  lies completely 

outside the support under K, encouraging us to reject H when we see data proving that 

H is true (e.g. data ( , ) (0.69,0.6)m r =  in the above plot); for the Neyman-Pearson test 

this only happens when 1 α∆ > − , but for the conditional test it is a problem for 
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some r , no matter what the values of and ( 0)α ∆ > .  It also follows that, for many 

values of r , we could reduce rα  to zero without increasing rβ ; it would seem to be a 

requirement of any reasonable methodology that 0rα =  in such a case. 

 

These problems have some unpleasant implications for interval estimates as well as 

tests.  We will consider only the interval estimates conditional on r , now widely 

regarded as superior to the unconditional intervals. 

 

Confidence intervals conditional on r. 

 

Conditional on R r= , 1
2~ Uni( (1 ))M rθ ± − .  Based on this, we can find the 

conditional 100% confidence interval for θ , 1
100 2( ) ( (1 ))m m r≡ ± −^ , which has a 

width of (1 )r− (and is the same as the 100% unconditional confidence interval for 

θ ).  Conventionally (and in accordance with the conditional rejection region for 

positive α  examined above)3, the conditional 90% confidence interval is defined as 

( 0.45(1 ))m r± − , i.e. it is the central nine-tenths of 100 ( )m^ .  However any interval of 

the same width, lying entirely within 100( )m^  – not necessarily in the centre – will 

also have coverage of 90%.  More generally, any interval within 100 ( )m^  of width 

(1 )(1 )rα− −  has coverage of 100(1 )%α− , and any union of disjoint intervals all 

within 100 ( )m^  having a combined width of (1 )(1 )rα− −  also has total coverage of 

100(1 )%α− .  It is impossible to choose between these options on the basis of either 

width or coverage.  If all these intervals (and even unions of intervals) are considered 

valid – and there is no statistical basis for preferring any one to another – it follows 

that any point in 100 ( )m^  can be included in or excluded from a valid confidence 

interval of any coverage less than 100% purely on the whim of the analyst. Only when 

0α =  is there a unique shortest4 interval with the specified coverage, namely 

100 ( )m^ .  

                                                 
3 See, for instance, Welch (1939), uncontested in the subsequent literature. 
4 Usually intervals are required to be ‘shortest on average’; since we are conditioning on r  it is not 
appropriate to average over data with differing ranges, averaging over m  (for a given range) is 
redundant since all these intervals have the same width. 



 Chapter 6: Welch’s Uniform example re-visited. 

 130

 

Views on randomisation vary, but conditional inference has, from the time of Fisher 

onwards, always been discussed in the context of evidential inference; the aim is to 

extract all the relevant information from the data, not merely achieve predetermined, 

low error rates (see Fisher, Cox, Pratt, and Birnbaum, for example); this rules out 

methods with random components.  The proponents of conditional inference would 

not have approved of this inference had they been aware of its arbitrary attributes. 

 

6.4 Using the likelihood ratio statistic in the Uniform example. 

 

To understand what is going wrong, we need to look at the likelihood ratio statistic, 

( )LR X
�

.  For each ix  ( 1,...,i n= ), the density, ( ; )if x θ , is either one or zero under the 

uniform model, so the likelihood (joint density) of 1( , , )nx x… , 
1

( ; ) ( ; )
n

i
i

L x f xθ θ
=

=∏�
, 

can also only take the values one or zero.  The likelihood is one only when 
1 1

12 2, , nx xθ θ− < < +…  or, equivalently, when 1 1
2 2(1 ) (1 )r m rθ θ− − < < + − .  Since, 

for any θ , the likelihood of x
�

 can only take these two values, there are at most four 

possibilities for the likelihood ratio5 of any x
�

: 0
0 , 0

1 0= , 1 1
0 1,  and 1= ∞ = .  The first 

of these indicates that the data we have observed cannot occur under either 

hypothesis; assuming that either H or K is true (or that we do not test H against K 

when it is clear that neither is true), we may rule this out.  It follows that the 

likelihood ratio statistic is a discrete variable taking only three values even though the 

original X  variables are continuous.  This explains why a seemingly reasonable 

critical region was arbitrary; when the likelihood ratio statistic is discrete, only a 

limited number of -α values can be used without resorting to the equivalent of a 

randomising device, however unconsciously. 

 

                                                 
5 0

0  and 1
0  are both formally undefined.  The first we can exclude for the reason given below, the 

second we interpret as ∞  i.e. 1
0

lim εε→
, where 0ε →  from above, since likelihoods are non-negative.  

The actual value assigned to the likelihood ratio is important (for our purposes) only up to their 
ordering; clearly, for any 0 1ε< < , the value 1 1 0ε > > . 
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We can consider the likelihood ratio as a function of ( , )m r , instead of as a function 

of x
�

, since ( , )m r  is a sufficient statistic.  The diagram below shows the likelihood 

ratio as a function of ( , )m r  for the hypotheses H: 0.5θ =  versus K: 1.1θ = . 

 

Figure 6.5 
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The areas in the ( , )-planem r  corresponding to the three different likelihood ratio 

values are labelled A, B and C.  When 0α > , the conditional rejection region always 

contains part, but not all, of A, and it often contains part, but not all, of B as well. (B 

will not exist if ∆  is large enough.) The unconditional rejection region 

( 0)α > contains either part, but not all, of B (when ∆  is small) or part, but not all, of 

A (when ∆  is large).  (Only in the very specific case 1 α∆ = −  can the 

unconditional rejection region be described in terms of values of the likelihood ratio 

statistic, this is a special case of option ‘a’, discussed below.)  A rejection region of 

the form {( , ) : ( , ) }m r LR m r k≤  would include (or exclude) all of any area of constant 

likelihood ratio.  When we use the conventional critical regions, described above, we 

reject or accept H partly on the basis of features of the data over and above the 

likelihood ratio.  The part of B that is included in the rejection region is chosen on a 

basis that is arbitrary with respect to the likelihood ratio, and therefore also with 

respect to the error probabilities; this is why we could change it without changing the 

error probabilities.  One of the results of this is that, although no other test at the 5% 
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(conditional or unconditional) level has higher power (conditional or unconditional) 

than these tests, the tests are not uniquely most powerful.  Any part of A that is 

included in the rejection region is also arbitrarily chosen and adds to the value of α  

without adding anything to the power. 

 

We can get rid of this arbitrary quality by basing our rejection region strictly on the 

value of ( , )LR m r .  Since the likelihood ratio can only take three distinct values, our 

choice of rejection rules (and α  or rα ) is very limited; we should reject H when the 

likelihood ratio is ‘small’ and it only remains to decide how small, i.e. which value to 

use as the cut-off value, k .  The likelihood ratio statistic can only take the values 

0,1 or ∞ ; we can rule out using ∞  as the cut-off value, not (according to frequentist 

reasoning) because it is so large (although it is), but because it would produce a 

significance level of 100%.  There are two other options. 

 

Rule (a): Reject H whenever ( , ) 1LR m r ≤ , i.e. when ( , ) B Cm r ∈ ∪ . 

 

In this test, we reject H whenever it is possible that K is true.  The power of the test is 

100% ( 0β = ) and the test is unique in achieving this power for the given significance 

level; it is therefore uniquely optimal in the Neyman-Pearson sense.  However, the 

significance level, α , depends on ∆ , and is given by: 

 

 
2(1 ) ,   0 1

0,                1.
⎧ − ∆ < ∆ ≤
⎨

∆ >⎩
 

 

This will be greater than 5% whenever 1 0.05 0.776∆ < − ≈ ; for instance, if 0.5∆ = , 

the significance level is 25%. 
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The conditional significance level, rα , is   

 

 
(1 ) ,    ( , ) {[0,1 ) (0,1)}

(1 )
0,                   ( , ) {(1 ,1) (0,1)} {[0,1] [1, )}. 

r r
r

r

−∆ −⎧ ∆ ∈ −∆ ×⎪ −⎨
⎪ ∆ ∈ −∆ × ∪ × ∞⎩

 

 

Since this varies with r , the test is not Fisherian.  We can still calculate the 

conditional probabilities if we believe them to be more relevant; the conditional 

power is 100% for all r .  The conditional significance level will be greater than 5% 

whenever 1∆ <  and 1 ( / 0.95)r < − ∆ .  For instance if 0.5∆ =  and 0.3r =  then 

40%rα = .   

 

Clearly there is a problem with using this rejection region; whether or not we 

condition on r , our significance level will often be unacceptably high.  Since the 

power is always one ( 0)β =  but (or )rα α  is frequently positive, we can see that this 

test is often biased in favour of K and never in favour of H.  We should consider using 

the alternative cut-off value for the likelihood ratio. 

 

Rule (b): Reject H whenever ( , ) 0LR m r = , i.e. when ( , ) Cm r ∈ . 

 

This test tells us to reject H whenever H cannot possibly be true.  The significance 

level of the test (conditional on r  or unconditional) is zero ∀∆ . This is a better test 

than option ‘a’ because the significance levels (of all kinds) are zero (thus we call it 

the zero-level test); the test is never biased against H (from either a conditional or 

unconditional point of view).  The rule, Reject H whenever ( , )m r C∈ , satisfies the 

requirements of both the (unconditional) optimal Neyman-Pearson test and the 

(conditional) Fisherian test; the former, because it has the (unique) highest power of 

any 0α =  level test, and the latter, because the rα  values are all the same (zero), and 

the conditional power values are optimal for each r .  However, the test still has both 

conditional and unconditional features, and we may ask which are more relevant.  To 

answer this, we need a context.  Clearly, there are circumstances (for instance, some 
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quality control situations) where the individual values of rβ  may not be important, 

but the average, β , is.  However, for the purposes of this discussion, we assume that 

we are primarily interested in identifying those measures that help us answer the 

question ‘What does the data-set say about the evidence for the hypothesis H relative 

to K?’  Below we give the formulae for the conditional and unconditional probability 

of Type II error; by looking at some specific cases, we may be able to assess which of 

these measures is more informative for our purposes. 

 

Comparison of conditional and unconditional error probabilities 
for the zero-level test.  

  

The unconditional probability of Type II error, β , is given by: 

 

 
2(1 ) ,   0 1

0,                1.
β

⎧ −∆ < ∆ <
= ⎨

∆ ≥⎩
 

 

The Type II error probability conditional upon r , rβ , is: 

  

 
(1 ) ,    ( , ) {[0,1 ) (0,1)}

(1 )
0,                   ( , ) {(1 ,1) (0,1)} {[0,1] [1, )}. 

r

r r
r

r
β

−∆ −⎧ ∆ ∈ −∆ ×⎪ −= ⎨
⎪ ∆ ∈ −∆ × ∪ × ∞⎩

 

 

We can check that β  is the average (over r ) of the rβ  values, as follows. 

 

1

0
1

0

2

  ( ) ( )

(1 ) 2(1 )
(1 )

(1 ) .

R r RE f r dr

r r dr
r

β β
−∆

−∆

= ⋅

− ∆ −
= ⋅ −

−

= −∆

∫

∫  

 

This test is never biased in favour of K; it is sometimes biased in favour of H and 

sometimes unbiased.  Which tests we think are biased depends on whether we take the 

conditional or unconditional point of view.  From the unconditional point of view, the 
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test is biased in favour of H when 0β α> = . This happens whenever the two 

supports overlap, i.e. when B ≡ ∅ .  Otherwise the test is unbiased and 0α β= =  so 

we can tell with certainty which of the two hypotheses is true; you would expect to be 

able to do this when the two supports do not overlap.  

 

From a ‘conditional on r ’ point of view, the test is biased in favour of H only when 

0r rβ α> = , where r  is the value of R  observed in the experiment.  This happens 

whenever the two supports overlap at the r  level, i.e. when a horizontal line at height 

r  passes through B.  Otherwise the test is unbiased and 0r rα β= = .  This 

requirement is not as strong as B ≡∅ , yet, since we can tell with certainty which 

hypothesis is true when our data is of this form, it seems clear that the conditional 

version of power is the superior measure.  To illustrate this, consider the test of 

H: 0.5θ =  versus K: 1.1θ =  ( 0.6)∆ = .  Suppose that we observe 0.75r =  (see Figure 

6.5 above); any value of ( ,0.75)m  that we could possibly observe (under either 

hypothesis) completely rules out either H or K; thus the ‘relevant’ error probabilities 

are surely zero.  The conditional values ( 0.75α  and 0.75β ) are both zero, whereas the 

unconditionalβ  is ( ) 16%KP B =  – a fact that is clearly irrelevant.  Does the 

conditional power always work as well as this?  Consider the data point 

( , ) (0.8,0.25)m r = ; this point is in area B and, thus, not in the rejection region so we 

accept H; the conditional power when 0.25r =  is 80% which is high enough for us to 

consider that this data tends to support H over K to some degree.  However, 

examination of the diagram suggests that the data is equally consistent with the two 

hypotheses; we will return to this point later. 

 

The confidence interval. 

 

The confidence interval that corresponds to the test that rejects H if and only if 

( , ) 0LR m r =  is the 100% interval for θ : (1 )
2( )rm −± .  The uniform case is unusual in 

having a meaningful 100% confidence interval and this interval is produced by both 

the Neyman-Pearson and Fisher approaches, that is, they agree about the 100(1 )%α−  

interval when 0α = .  These intervals have the shortest average overall length of any 
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intervals with a 100% success rate, and this is equally true when we confine ourselves 

to looking at (long-run) data for any particular R r= .  Note that there is no 

disagreement between the formal coverage or confidence level of this interval and 

what we know about its properties (as there was with the 90% unconditional 

intervals); it contains 100% of the possible values of θ  and is indeed called a ‘100% 

confidence interval’. 

 

6.5 Using a ‘better’ ancillary statistic for the Uniform case. 

 

We have illuminated a number of issues by going directly to the likelihood ratio 

statistic; is there any other approach that is similarly edifying?  In this section we 

show that the appropriate inference becomes obvious if we condition on an alternative 

ancillary statistic that has the Fisherian structure for the binary parameter space 

1 2{ , }B θ θΘ = . 

 

A Fisherian ancillary statistic on the binary parameter space. 

 

A Fisherian ancillary statistic6 is any statistic A  such that ˆ( , )S A θ≡  where A  has the 

same distribution θ∀ ∈Θ , S  is minimal sufficient for θ ∈Θ , and θ̂  is a maximum 

likelihood estimator (MLE) of θ ∈Θ . 

 

When we are dealing with a binary parameter space, the likelihood ratio statistic is the 

minimal sufficient statistic for θ  in that space.  In the Uniform case, the likelihood 

ratio statistic is a discrete statistic taking only three values (see Figure 6.5 where it is 

shown as a function of ( , )m r ); ( , )M R  is not minimal sufficient for this parameter 

space since it discriminates unnecessarily between data points with the same 

likelihood ratio value.  Since ( )LR X
�

 is minimal sufficient, so is its natural logarithm: 

ln{ ( )}LR X
�

.  The maximum likelihood estimate, a function of the data x
�

, is also 

dependent on the nature of the parameter space since it is that value of θ  in the 

                                                 
6 Fisher (1956), Basu (1963). 
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parameter space for which the likelihood ( ; )L x θ
�

 is maximum.  When we are 

considering the parameter space \ , the MLE is not unique but M  is the unique 

unbiased MLE.  When we are considering the parameter space BΘ , the maximum 

likelihood estimator, ˆ( )Xθ
�

, is whichever one of the parameter values has the higher 

likelihood given X
�

.  Since 1 2( ) ( ; ) ( ; )LR X L X L Xθ θ=
� � �

, it follows that the maximum 

likelihood statistic can be written as: 

  

 1

2

,   if ( ) 1ˆ( )
,   if ( ) 1.

LR X
X

LR X
θ

θ
θ

>⎧
= ⎨ <⎩

�
�

�
 

If ( ) 1LR X =
�

, the likelihood is constant over BΘ  and it is pointless to talk of a 

maximum or even maxima.   

  

Consider the statistic ˆ( ( ), ( ))A X Xθ
� �

 where ( ) | ln{ ( )}|A X LR X=
� �

.  Since ( )LR x
�

 can 

only take the values 0, 1, and ∞ , ln{ ( )}LR x
�

 can only take the values −∞ , 0 and ∞  

and ( )A x
�

 can only take the values ∞  and 0. 

 

Table 6.2 

ˆ( ( ), ( ))A x xθ
� �

 ln{ ( )}LR x
�

 

(0, )∗  0  

1( , )θ∞  ∞  

2( , )θ∞  −∞  

  

There are three distinct values of both ˆ( ( ), ( ))A x xθ
� �

 and ln{ ( )}LR x
�

, in a one-to-one 

correspondence with each other, hence ˆ( ( ), ( ))A x xθ
� �

 is a one-to-one function of 

ln{ ( )}LR x
�

 and is thus a minimal sufficient statistic for Bθ ∈Θ .   

 

It is easy to show that A  is an ancillary statistic on BΘ .  Note that ( , )M R  is still 

sufficient for Bθ ∈Θ , even though not minimal sufficient, hence ( ) ( , )LR X LR M R=
�

 

and ( 0) { ( ) 1} { ( , ) 1} {( , ) B}P A P LR X P LR M R P M R= = = = = = ∈
�

.  This probability 
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is the same under both hypotheses (i.e. for both Bθ ∈Θ ) – see Figure 6.5.  Since A  is 

dichotomous, it follows that it is ancillary over BΘ  and, since A  and θ̂  together 

comprise the minimal sufficient statistic, it follows that A  is a Fisherian ancillary 

statistic on BΘ (as well as satisfying Cox’s requirements).  Thus, according to Fisher’s 

theory, we should condition on the observed value of A  when carrying out tests on 

Bθ ∈Θ . 

 

Interpreting A  as a precision index. 

 

The statistic A  has a simple intuitive interpretation.  Consider the distribution of the 

raw data-values iX .  We are sampling randomly from a distribution which is either 

1
1 2Uni( )θ ±  or 1

2 2Uni( )θ ± .  If the two distributions do not overlap, we should be able 

to tell (from any data), with absolute certainty, which is the true hypothesis.  Neither 

maximising the power nor conditioning on r  made this automatic; in both cases the 

conventional choice of positive α  seemed reasonable but made it difficult to interpret 

the evidence correctly.  The situation should be quite straightforward even when the 

distributions do overlap.  The iX  variables have one density or another as shown in 

the diagram below. 

 

Figure 6.6 
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In such a case, any data vector will either be completely informative regarding the two 

hypotheses or completely uninformative.  For example, consider again testing 

H: 0.5θ =  versus K: 1.1θ = .  Under H, ~ Uni(0,1)iX  whereas under K, 

~ Uni(0.6,1.6)iX .  If all the data falls in the overlap interval, [0.6,1.0], the two 

hypotheses are equally consistent with the data and we are none the wiser for 

observing it.  On the other hand, if not all the data is in the overlap region, we know 

with certainty which of the two hypotheses is true7. The statistic, A , distinguishes 

between these two cases: ( ) 0A x =
�

 indicates that all the x ’s are in the overlap region 

and the data is completely uninformative, while ( )A x = ∞
�

 indicates that they are not 

all on the overlap interval and so the data is completely informative.  For the example 

above, ( ) 0A x =
�

 if and only if all the x ’s are in [0.6,1.0].  (It is now easier to see that 

A  has the same distribution under the two hypotheses.)  It would seem that A  is the 

ultimate ‘precision index’ for the test, even more so than R . 

 

(The statistic A  is similar to that which we used as a precision index in the Binomial 

case.  In that case, such a statistic existed for only a limited range of hypothesis pairs, 

in contrast to the present case.  In both cases, the absolute value of the natural 

logarithm of the likelihood ratio statistic is an ancillary statistic on BΘ .) 

 

Conditioning on | ln ( ) |A LR X=
�

. 

 

What happens when we condition on the observed value of A ?  Again we will use the 

sufficient statistic ( , )M R  in preference to the data vector X
�

.  Having observed 

A a=  we should base our tests on the conditional distributions (under H and K) of 

( , )  M R given A a= . 

 

                                                 
7 We are not considering the further possibilities that the data shows that (i) neither hypothesis can be 
true, or (ii) the underlying model assumptions are incorrect.  Were the first situation to arise, we could 
discontinue the test of those particular hypotheses.  The assessment of an inference procedure is usually 
made on the assumption that the specified model is correct. 
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(i) When 0A =  … 

 

When we observe that all our observations are lying in the overlap region, we have 

observed 0A = .  Conditional upon this being so, ( , )M R  must lie in the area we 

called ‘B’. 

 

Figure 6.7 
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The support of ( , )M R (under H or K), given that 0A = , is shown above. The density 

is the same under both hypotheses and varies with n ; when 2n =  the density is 

constant, ( , ) ( , ) 12.5H Kf m r f m r= =  over this area.  Since ( , )M R  has exactly the 

same conditional distribution under H and K, it is not informative regarding these two 

hypotheses.  Although this is obvious from a common sense point of view, neither of 

the previous approaches that we examined revealed this fact.  If we insist upon 

defining a rejection rule, there are only two options open to us: either we reject H 

when we observe any ( , )m r  in this region, in which case the conditional significance 

level, 0Aα = =100% as is the conditional power ( 0 0Aβ = = ), or we accept H for all 

( , )m r  in this region, in which case 0 0Aα = =  as is the conditional power 

(and 0 100%Aβ = = ).  In other words, since there is no basis whatsoever for 

distinguishing between different parts of this area we must either accept or reject H 

throughout the area and one of the error probabilities will be 100% while the other is 

zero.  We might choose to let 0Aα =  be zero in the interest of keeping the test biased in 

favour of H rather than in favour of K; this means that we will always accept H when 
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( , )m r  is in this region, but the fact that the conditional power is zero means that we 

cannot read anything into our failure to reject H.  This brings us, rather laboriously, 

back to the fact that was obvious, namely that we can infer nothing useful from this 

type of result vis-à-vis H and K.  Note however that the sheer irrationality of using 

any value of α  other than zero (or possibly 100%) is obvious once we have 

conditioned on 0A = ; this was not the case when we did not conditional nor when we 

conditioned on R .  The same is true when we observe A = ∞ . 

 

(ii) When A = ∞  … 

 

The supports of ( , )M R  under H and under K conditional upon A = ∞  are shown 

below. 

Figure 6.8 
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The white areas of the diagram are not part of either support – the supports do not 

overlap.  Since this is the case we can tell with absolute certainty which is the true 

hypothesis by observing whether ( , )m r  lies in the support under H or the support 

under K.  Thus we reject H if and only if ( , )m r  lies in the support under K and hence 

not in the support under H; for this test the conditional error probabilities are 

0A Aα β=∞ =∞= = , consistent with the fact that, in these circumstances, the result of the 

test cannot be wrong.  Again it is instantly obvious that the only appropriate 

significance level is zero.   
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If we want to define an accept/reject rule for data based on a fixed sample size (rather 

than optional stopping), the obvious course is to set both the conditional significance 

levels, aα , equal to zero.  The resulting test is the zero-level test discussed in §6.4 and 

the analogous confidence intervals are the 100% intervals.   

 

Which power is most relevant? 

 

For this test, all the significance levels – conditional (whether upon R  or A ) or 

unconditional – are zero.  However the various versions of power are not all the same; 

the power conditional upon the observed value of A  is the one that gives us the best 

idea about the evidence contained in the data.  

 

Our rejection region is that labelled ‘K’ and filled with the darker colour in Figure 

6.8.  The unconditional approach described the power of this test as 

84% [( , )  rejection region]KP M R= ∈ .  The power conditional upon R  depends on the 

observed value of r , for instance if 0.25r =  then the conditional power equals 

[( , )  rejection region | 0.25] 80%KP M R R∈ = = , whereas if 0.5r =  then the 

conditional power is 100%.  The power conditional upon A  depends on the observed 

value of a , if 0a =  and the data is uninformative, then the conditional power is zero, 

whereas when a = ∞  and the data is completely informative, the conditional power is 

100%.  Let us consider a particular observation.   

 

The observation ( , ) (0.8,0.25)m r =  is in the overlap area, which means that its 

occurrence does not help us to choose between H and K.  It is not in the rejection 

region, so we will not reject H; how much can we read into this fact regarding support 

for the hypothesis H?  The unconditional power and the power conditional upon 

0.25r =  are (respectively) 84% and 80%.  We remarked earlier that this gives the 

counter-intuitive impression that the data favours H somewhat (since with high power 

we would expect to reject H if it was false).  Let us consider this question from the 

‘conditional upon a ’ point of view.  We have observed the event 0A =  but this was 

equally likely to occur under either hypothesis so we can infer nothing from it; the 
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power conditional upon 0A =  is zero, which means that we should infer nothing from 

our failure to reject H. The alternative values of 84% and 80% are utterly misleading.  

In fact the unconditional power and the power conditional upon r  are each the 

average of two values, one of which is completely irrelevant.  Consider the value 80% 

which is the power conditional upon r  being equal to 0.25.  When 0.25r = , we can 

distinguish between two cases with respect to A : either ( , )m r  is in the overlap area 

or it is not.  The power conditional upon both (i) 0.25R =  and (ii) data in the overlap 

area (i.e. 0A = ) is: 

 [( , )  rejection region | ( 0.25& 0)] 0KP M R R A∈ = = = . 

 

By contrast the power conditional upon both (i) 0.25R =  and (ii) data not in the 

overlap area ( A = ∞ ) is: 

 [( , )  rejection region | ( 0.25& )] 100%KP M R R A∈ = = ∞ = . 

 

Now, when 0.25r = , the probabilities of A  being zero or infinity are 0.2 and 0.8 

respectively8, and the power conditional upon R  being 0.25 can be seen to be the 

average of the two conditional9 powers weighted according to their probabilities, thus  

 

 

[( , )  rejection region | 0.25]
[( , )  rejection region | ( 0.25& 0)] ( 0 | 0.25)

[( , )  rejection region | ( 0.25& )] ( | 0.25)
(0% 0.2) (100% 0.8)
80%.

K

K K

K K

P M R R
P M R R A P A R

P M R R A P A R

∈ =
= ∈ = = × = = +

∈ = = ∞ × = ∞ =
= × + ×
=

 

 

If we condition on R  but not on A , the power will be the average over both the 

possible values of A , yet in any given case A  must be either zero or infinity.  If it is 

zero, why should a failure-rate for the ‘ A = ∞ ’ case play any part in our assessment, 

and if it is infinity, why should we be influenced by a value relevant only 

when 0A = ? 

 

                                                 
8  and A R  are not independent. 
9 That is, conditional upon A  in addition to R . 
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Should we condition on both R  and A ?  We have just shown that conditioning on R  

alone is inadequate – when we condition on A , as well, it makes a striking difference 

and brings our inference into line with common sense.  Can we condition on A  alone 

or do we also need R ?  In the numerical example above, the power conditional on A  

alone was either zero or 100%.  This was also true of the power conditional upon A  

and 0.25R = ; is R  always redundant once we have conditioned on A ?  The answer 

is yes and this can be shown in general as follows.  

 

Since the significance level is zero (overall and also for any ancillary subset based on 

R  and/or A ), we need only consider how the power of the test is interpreted.  The 

power conditional on both R  and A  is given by 

 power( , ) [( , )  rejection region | ( & )]Kr a P M R R r A a= ∈ = =  

 

Now, 

 
power( , ) [( , )  rejection region | ( & )]

100%
power( ),

Kr P M R R r A

a

∞ = ∈ = = ∞
=
= = ∞

 

 

since, when A = ∞  and K is true, ( , )M R  must be in the rejection region no matter 

what the value of r . 

 

The event 0A =  can only occur if 1∆ <  and 1r < −∆ , in which case 

 

 
power( ,0) [( , )  rejection region | ( & 0)]

0
power( 0),

Kr P M R R r A

a

= ∈ = =
=
= =

 

since ( , )  rejection regionM R ∈  implies that A = ∞ . 

 

Thus, for all  and a r  the power conditional upon A a=  and R r=  is the same as the 

power conditional upon A a=  alone; once we have conditioned upon A , 

conditioning upon R  is redundant. 
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We can see that, while the traditional approach to conditioning using the ancillary 

statistic R  and a positive value of α  is misleading, conditioning can still play a part 

in helping us to understand the problem.  Although R  is ancillary, conditioning upon 

it does not help us to understand the important features of this model; it does not 

reveal the problems inherent in using a positive α  and, even when 0α = , the power 

conditional upon r  is still misleading.  By contrast, if we condition on 

| ln ( ; , ) |ij i jA LR X θ θ=
�

, whenever we want to test iθ  against jθ , the problems and 

solutions immediately become apparent.  In one way, this is a more complex 

procedure since, unlike R , ijA  has to be re-defined for every pair ( , )i jθ θ  (order not 

important).  Nevertheless, this approach illuminates the issue of confidence intervals, 

as well as tests, since it shows that the 100% confidence interval is the only 

appropriate interval to use.   

 

Using ijA  to understand the Uniform confidence interval. 

 

This does not mean that the value of R  has no significance; it is true (as Lehmann 

said) that, when r  is large enough, you can virtually pinpoint the value of θ , but this 

can be understood in terms of the relationship between R  and the statistics ijA .  The 

100% confidence interval for θ ∈\  is (1 )
100 2( ) ( )rm m −= ±^ , which has a width of 

(1 )r− .  Any value of θ  outside this interval cannot possibly have produced the 

observed data; any value within is consistent with the data, but between any two 

values of θ  (say, iθ  and jθ ) both lying within the interval we can make no 

meaningful judgement on the basis of the data.  We cannot narrow the interval to 

(say) a 90% interval in order to see if one of the values drops out because such an 

interval would be completely arbitrary and we could equally well justify using a 

different interval which reverses the preference between the two θ ’s.  This is 

consistent with the fact that ( , ) 0ijA m r =  for any two values ( & i jθ θ ) both within the 

100% interval.  The larger r  is, the narrower 100 ( )m^  is, and this has implications for 

the ‘number’ of hypothesis pairs for which the data is decisive, i.e. able to distinguish 

the true hypothesis.  For example, suppose that 1
2r = , then 100 ( )m^  is 1

4m ±  and 
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whenever two hypothesised values are more than half a unit apart, (at least) one of 

them must be completely inconsistent with the data; if r  is larger, say 4
5 , then 

100 ( )m^  is 1
10m ±  and whenever two values are at least one-fifth of a unit apart, we 

will be able to make a confident judgement between them.  A large value of r  

narrows down the range of possible θ  values, but it is going too far to say that we 

will get more information about θ , relevant to any context, when r  is larger.  For 

choosing between given iθ  and jθ , even data with a very small range can be perfectly 

informative if one or more of the observations lies outside the overlap area; 

alternatively, if ∆  is small and there is a large overlap between the two supports, even 

data with a fairly large range may fail to give us any information that will help to pick 

the correct hypothesis.  As an ancillary statistic, ijA  is superior to R  because, in any 

given context (i.e. for any pair of hypotheses), it perfectly distinguishes between 

informative and uninformative data. 

 

Once iθ  and jθ  are fixed, we are faced with only three situations:  

i. We can dismiss both hypotheses because both values are outside 100 ( )m^ . 

ii. Both hypotheses are plausible and equally so since both values are inside 

100 ( )m^ . 

iii. One hypothesis can be rejected in favour of the other with zero error 

probabilities because one of the values is inside 100 ( )m^  and the other is 

outside. 

 

We can partition \  into two subsets: 100\ ( )m\ ^  and 100 ( )m^ ; the first contains all 

the values that cannot possibly be θ , given the data, the second contains all the values 

(of θ ) that could possibly have given rise to the data; this interval is narrower when r  

is larger, but given the uniform model, there is no rational basis for preferring any one 

of these values over another to even the slightest degree.  
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6.6 Gambling on the Uniform example with a better ancillary 

statistic. 

 

In Chapter 5 we used the ancillary statistic, R , to find a betting strategy that would 

beat the Neyman-Pearson ‘optimal’ 90% confidence interval for θ  in the Uniform 

case.  This strategy was highly effective and could equally have been used in tests of 

simple hypotheses where it would have worked under both H and K.  We have argued 

that, when we are testing two simple hypotheses, the dichotomous statistic, A , is the 

appropriate ancillary statistic on which to condition.  We can test this assertion by 

finding out if it is possible to use A  to create a betting strategy that will beat the 

hypothesis test conditional upon R .  We look at two cases: first, the hypothesis test 

using 5%rα =  (for all r ) with the rejection region on the right side of the null 

support (this approach is now widely regarded as the most appropriate for evaluating 

evidence – see §4.1 (The uniform example – Part II)); second, we will use 0α =  

(since it seems that this is the only appropriate value) and use the betting scenario to 

confirm that the power conditional upon a  is the most relevant error probability for 

this test.  

 

As before, we look at the case 2n =  and our two hypotheses are H: 0.5θ =  and 

K: 1.1θ = , hence 0.6 1∆ = <  and the two supports of ( , )M R overlap. A  is a function 

of ( , )M R  taking the value zero for ( , ) Bm r ∈  (the overlap area) and the value infinity 

for ( , ) A Cm r ∈ ∪ .  B ≡∅  when 0.4r > ; in such a case, A  can only take the value 

infinity, nevertheless there is still a betting strategy that will work whenever 0rα >  

(see below); when 0rα =  the error probabilities conditional on A  are in agreement 

with those conditional on R .  However, the probability that R  is less than 0.4 is 64%; 

we will look, first, at the two cases 1
3r =  and 1

4r = . 
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Test 1: 1
3 ,  5%rr α= = . 

The conditional distribution of M  given 1
3R =  is Uni 1 1

2 3( (1 ))θ ± − , hence Uni 51
6 6( , )  

under H and Uni 23 43
30 30( , )  under K.  The conventional 5% critical region, conditional on 

r , has us reject H whenever 1 1 1 1 1 4
1 2 2 2 20 3 5( )(1 ) ( )(1 )m rθ α> + − − = + − − = , then when 

H is true (and 1
3r = ) we will reject H only 5% of the time.  The conditional power of 

this test, 1/3rκ = , is 4 1
5 3( | ) 0.95KP M R> = = , hence 1/3 5%rβ = = . 

 

If we believe that the success rates conditional upon r  are the relevant values for 

interpreting the result of this test, then we should be prepared to bet that the test result 

is right, risking 0.95 dollars to win 0.05 dollars, or equally that the test result is 

wrong, risking 0.05 dollars to win 0.95 dollars (these odds work under both H and K 

since 5%r rα β= =  for 1
3r = ).   

 

On the basis that the test result is more reliable (in fact, totally reliable) when A = ∞  

and less reliable when 0A = , we adopt the strategy of betting that the result of the 

test is right whenever we observe A = ∞  and betting that the test result is wrong 

whenever we observe 0A = .  (It is more enlightening to talk about betting in favour 

of or against the result of the test since this highlights the fact that some data is more 

or less informative, but note that this is equivalent to betting about the state of nature 

since we can deduce from the data what the test result is, i.e. betting that the test result 

is wrong amounts to betting that H is true when the data is in the rejection region, and 

amounts to betting that K is true when the data is in the acceptance region.)  We 

randomly generated 1000 samples under both H and K and the cumulative results of 

this betting strategy are shown in the plots below. 
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Figure 6.9 
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Figure 6.10 
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The strategy works exceedingly well regardless of which of the hypotheses is true and 

will also work if H and K appear in any proportions p  and 1 p−  (0 1)p≤ ≤ .  We can 

see the details of how the strategy worked by looking at the 1000 samples cross-

classified according to the test result (inference) and the bet (value of a ). 
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a) 1
3R = , H is true. 

 

Some of the probabilities associated with this scenario are as follows ( r  is equal to 1
3 , 

‘ rP ’ denotes probability conditional on R r= ): 

� 5%rα =  

� ( 0) 10%rP A = =  

� (Result is wrong | 0) 50%rP A = =  

� (Result is wrong | ) 0rP A = ∞ = .  

 

 

Table 6.3 

 Result right 

(Accept H) 

Result wrong 

(Reject H) 

Total 

Bet ‘wrong’ 

( 0)A =  

49  [-0.05] 45  [+0.95] 94 

Bet ‘right’ 

( )A = ∞  

906  [+0.05] 0  [-0.95] 906 

Total 955 45 1000 

 

 

The four probabilities given above are reflected in the respective relative frequencies: 

45/1000 = 4.5%, 94/1000 = 9.4%, 45/94 = 47.9% and 0/96 = 0; the dollar profit made 

on each of the four types of result/bet combination is displayed in square brackets in 

the table. 

 

b) 1
3R = , K is true. 

 

� 5%rβ =  

� ( 0) 10%rP A = =  

� (Result is wrong | 0) 50%rP A = =  

� (Result is wrong | ) 0rP A = ∞ = .  
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Table 6.4 

 Result wrong 

(Accept H) 

Result right 

(Reject H) 

Total 

Bet ‘wrong’ 

( 0)A =  

60  [+0.95] 59  [-0.05] 119 

Bet ‘right’ 

( )A = ∞  

0  [-0.95] 881  [+0.05] 881 

Total 60 940 1000 

 

The four probabilities are again reflected in the observed relative frequencies: 

60/1000 = 6%, 119/1000 = 11.9%, 60/119 = 50.4% and 0/881 = 0. 

 

Test 2: 1
4 ,  5%rr α= = . 

For the case 1
4r = , we used the same betting strategy based on the observed value of 

a .  We still used a conditional (on r ) significance level of 5% leading to the rule 

Reject H when 67
80m > ; in this case the power of the test is 85% so, under K, if we bet 

that the result is right we will either lose 0.85 dollars or win 0.15, and if we bet that 

the result is wrong, we either lose 0.15 dollars or win 0.85.  The cumulative profits 

over 1000 bets are shown below for H and K. 
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Figure 6.12 
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Again we can examine the 1000 samples to see that the strategy worked because of 

the conditional (on a ) features of the inference procedure. 

 

c) 1
4R = , H is true. 

� 5%rα =  

� ( 0) 20%rP A = =  

� (Result is wrong | 0) 25%rP A = =  

� (Result is wrong | ) 0rP A = ∞ =  . 

 

Table 6.5 

 Result right 

(Accept H) 

Result wrong 

(Reject H) 

Total 

Bet ‘wrong’ 

( 0)A =  

147  [-0.05] 49  [+0.95] 196 

Bet ‘right’ 

( )A = ∞  

804  [+0.05] 0  [-0.95] 804 

Total 951 49 1000 

 

  

The relative frequencies corresponding to the four probabilities given above are 

respectively: 49/1000 = 4.9%, 196/1000 = 19.6%, 49/196 = 25% and 0/804 = 0. 
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d) 1
4R = , K is true. 

 

The probabilities are as follows: 

� 15%rβ =  

� ( 0) 20%rP A = =  

� (Result is wrong | 0) 75%rP A = =  

� (Result is wrong | ) 0rP A = ∞ =  . 

 

Table 6.6 

 Result wrong 

(Accept H) 

Result right 

(Reject H) 

Total 

Bet ‘wrong’ 

( 0)A =  

150  [+0.85] 48  [-0.15] 198 

Bet ‘right’ 

( )A = ∞  

0  [-0.85] 802  [+0.15] 802 

Total 150 850 1000 

 

 

These probabilities are reflected in the relative frequencies: 150/1000 = 15%, 

198/1000 = 19.8%, 150/198 = 75.8% and 0/802 = 0. 

 

This successful betting strategy, based on a , can be used for any value of 0.4r <  (or, 

generally, any value of 1r < −∆  where 1 2| | 1θ θ∆ = − < ).  When 0.4r > , a = ∞  

(always) so we cannot bet based on the value of a .  However in this case the power 

of the test is 100% and since any positive value of α  is inefficient, there is a strategy 

that will win against (say) a 5% test whenever H is true (and therefore overall as long 

as H is sometimes true); simply use the rejection rule for the significance level zero, 

and bet for or against H based on this rule, since the power of this rule is also 100%, 

you will break even in the long run when K is true and do better than even when H is 

true. 
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If we use 0α = , as seems appropriate for this model, then all the conditional 

significance levels will also be zero, but the issue of power remains open.  If we reject 

H whenever ( , ) Cm r ∈ , should we judge the power of the test as being the power 

conditional on the observed value of r  or conditional on the observed value of a ?  

(We have already established that once we have conditioned on a , it makes no 

difference if we condition on r  as well.)  If we use the power conditional on r  ( rκ ) 

as the value on which to base the odds of the test being ‘right’ when K is true, will 

this be vulnerable to a betting strategy based on a ?  This question is only meaningful 

when  1r < −∆  and 1 2| | 1θ θ∆ = − < , since otherwise rκ  and aκ  are the same. 

 

Test 3: 1
4 ,  0rr α= = . 

Consider the case where we observe data with a range of 1
4 , we have the same 

hypotheses H and K as before.  Conditional upon 1
4R = , 71

8 8~ Uni( , )M  under H and 

29 59
40 40~ Uni( , )M  under K.  We now reject H whenever 7

8m >  in order to have a 

significance level of zero.   

 

Whenever (in a certain state of nature) there is a probability of η  that the test result is 

wrong and a probability of 1 η−  that the test result is right, then the following payout 

scheme is ‘fair’ based on these probabilities whenever this state of nature occurs: 

i. The punter bets that the result is right, and it is right and he wins η .  

ii. The punter bets that the result is right and it is wrong and he loses 1 η− .  

iii. The punter bets that the result is wrong and it is wrong and he wins 1 η− . 

iv. The punter bets that the result is wrong and it is right and he loses η . 

 

If 0η =  it follows that the result is always right and the second and third of these 

scenarios cannot occur; leaving us with either of two possibilities: 

i. The punter bets that the result is right and ‘wins’ 0η = , or 

ii. The punter bets that the result is wrong and ‘loses’ 0η = . 
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In other words, when the test result is a certainty (certainly right or certainly wrong) 

there are no non-zero payouts appropriate to the long run success rate.  For our test 

with 0α =  this is the case when H is true, so the punter will break even (in any 

number of bets) regardless of strategy. 

 

 When K is true, η β=  and 1 η κ− =  (the power).  The power conditional upon r  is 
7 1

1/ 4 8 4( | ) 80%r P M Rκ = = > = = , whereas the power conditional upon a  is 

7
8( | )a P M A aκ = > =  where 

 
0,             0
100%,      .a

a
a

κ
=⎧

= ⎨ = ∞⎩
 

 

As noted earlier, when 1
4R = , the probability of A  being zero is 20%, thus we can see 

that the value 1/ 4rκ =  is the weighted mean of the power values conditional on the two 

values of a , i.e. 0(0.2 ) (0.8 )rκ κ κ∞= × + × . 

 

Based on aκ , our strategy is to bet that the result is right when we observe a = ∞  and 
wrong when 0a = . 
 
Under K, the result/bet combinations (cells) have the following joint probabilities; the 

appropriate payoffs, based on rκ , are shown in brackets. 

 

Table 6.7 

 Result wrong 

(Accept H) 

Result right 

(Reject H) 

Total 

Bet ‘wrong’ 

( 0)A =  

20%  [+0.8] 0%  [-0.2] 20% 

Bet ‘right’ 

( )A = ∞  

0%  [-0.8] 80%  [+0.2] 80% 

Total 20% 80% 100% 

 

 

Thus the expected profit from a bet on a single random sample is: 



 Chapter 6: Welch’s Uniform example re-visited. 

 156

 (20% 0.8) 0 0 (80% 0.2) 0.32 dollars× + + + × = . 

 

In fact this strategy ensures that the punter will not lose money on any single bet.  

Since this same strategy will not lose money even when H is true, it is workable as 

long as Bθ ∈Θ .  From this we can see that the relevant power for the test is aκ  rather 

than rκ ; when 0A =  the payouts should be based on 0κ  and 01 κ−  and when A = ∞  

the payouts should be based on κ∞  and 1 κ∞− , otherwise the odds will be beaten by 

this strategy. 

 

In this chapter we have found that, in the Uniform (location) case, we can define 

ancillary statistics on the binary parameter spaces (instead of the usual natural 

parameter space, \ ) that satisfy the requirements of the restricted conditional 

principle (and even Fisher’s definition).  Binary parameter spaces may hold the key to 

extending the scope of conditional inference, including in those common cases where 

no ancillary statistic exists on the natural parameter space.  In the Uniform case there 

is an ancillary on the natural parameter space and yet those produced by the binary 

parameter spaces deliver much better results.  Conditioning on ijA  removes and 

illuminates the problems that arise when we use either unconditional inference or 

inference based on the traditional ancillary statistic R ; we can also argue that ijA  is 

more truly a precision index than is R .  This raises the possibility that binary 

parameter spaces may produce better results generally; we have already noted (see 

Chapter 3) that using composite hypotheses (equivalent to using a parameter space 

with more than two elements) means that the question at issue is ill-defined and this 

may make it harder to identify precision.  In the Uniform case it is evidently easier to 

identify a clear-cut precision index when we clarify the context of the test by 

specifying two simple hypotheses than when we have a large number of hypotheses in 

mind; it remains to be seen whether this advantage generalises to a greater range of 

cases. 

 


