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ABSTRACT 

 
 
 
Within mathematical statistics, there are important differences of opinion about which 
features of data encapsulate the evidence for or against a hypothesis.  At present the 
dominant school of thought in statistical inference is ‘frequentist’ theory, which 
utilises concepts such as the p-value of the data or the result of a test with given error 
probabilities.  Unlike most non-frequentist methods, this approach is in breach of the 
likelihood principle. 
 
In 1958 Cox published a seminal paper in which he supported Fisher’s view that 
frequentist inferences made conditional upon the value of an ancillary statistic 
produce results that are more relevant to the question at issue (eg. hypotheses) and, 
therefore, evidentially superior.  So compelling was his argument that, within a few 
years, this view had gained wide acceptance, at least in principle.  Inferences carried 
out according to Cox’s method are no more consistent with likelihood theory than 
other versions of frequentism, even though Birnbaum (1962) showed that certain of 
Cox’s tenets are closely allied to the likelihood principle.  In many common cases, no 
exact ancillary statistic exists on the conventional parameter space, and the 
conventional, unconditional inference remains unchallenged.  Attempts to extend the 
theory of conditioning by the use of approximately ancillary statistics are complicated 
by the need to weigh the gain in relevance against the loss of information occasioned 
by the lack of strict ancillarity.   
 
In this thesis, I identify a type of statistic that is exactly ancillary, in Cox’s sense, on 
binary parameter spaces.  Such statistics exist even in cases where there are no exact 
ancillaries on the conventional parameter space.  Adopting Cox’s approach, I argue 
that inferences made, conditional on the value of these statistics, are evidentially 
superior.  Conditioning upon these statistics is exhaustive and takes the pursuit of 
relevance, via conditioning, as far as it can be taken within the frequentist framework.  
 
Exhaustive conditioning allows us to criticise standard frequentist inference in terms 
of the concepts that define that theory, rather than by reference to concepts imported 
from alternative systems.  We see, for instance, that the standard p-value is the 
average of a number of conditional probabilities, only one of which is actually 
relevant to the question at issue. Thus, the conventional p-value and error probabilities 
of a test do not measure anything useful from the evidential point of view, and should 
be replaced by their conditional counterparts, which are the measures that are most 
relevant. 
 
Exhaustive conditional inference produces results that are more consistent with the 
likelihood principle than those from either unconditional or existing conditional 
methods.  In particular, it is not possible to get a result that is statistically significant 
against a hypothesis, H, from data where the likelihood under H is greater than the 
likelihood under the alternative hypothesis.  The properties of exhaustive conditional 
inference show that it is possible to approximate likelihood results while remaining 
formally frequentist.  
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Glossary of technical terms and abbreviations. 
 

Ancillary statistic: A statistic having (as a minimum requirement) a distribution that 

is independent of the parameter of interest in the specified parameter space. 

 

Ancillary event: An event having a probability that is independent of the value of the 

parameter of interest in the specified parameter space. 

 

Best critical region (BCR): The rejection region with highest power for a given 

significance level ( )α , given (in the absence of randomisation) by { : ( ) }x y LR x c= ≤  

where ( )HP Y c α≤ = . 

 

Binary parameter space (BPS): A parameter space containing exactly two distinct 

values.  Denoted (in general) BΘ . 

 

CLR: Critical likelihood ratio. 

 

Conditional confidence interval (CCI): Unless otherwise specified, this interval is 

based on ECI, i.e. on tests of simple hypotheses (covering all values of the 

conventional parameter space) conditional on the observed value of the DDF statistic. 

 

Confidence interval (CI): Two-sided optimal (NP) confidence interval, i.e. 

‘uniformly most accurate unbiased’ of specified coverage. 

 

Critical region: See rejection region. 

 

cp-value: p-value conditional on the observed value of the DDF statistic, ( )D Y .  The 

function ( )cp ⋅  operates on the likelihood ratio value. 

 

CP: Conditional Principle (assumed ‘unrestricted’ unless specified as ‘restricted’). 
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DDF statistic: The ‘difference of the distribution functions’ statistic.  This statistic is 

an EAS whenever Y  is continuous.  Denoted ( )D ⋅ as a function of Y . 

 

Exhaustive ancillary statistic (EAS): An ancillary statistic that partitions the 

support of the likelihood ratio statistic into pairs of values, except for LR=1, which 

comprises an entire sub-set. 

 

H: (Simple) null hypothesis (often given in this work as 1θ θ= ). 

 

K: (Simple) alternative hypothesis (often given as 2θ θ= ). 

 

LI: Likelihood interval. 

 

Likelihood: Denoted ( ; )L x θ . 

(1) As a function of x : the probability or density of random x  for a given (fixed) 

value of θ .   

(2) As a function of θ : the probability or density of (fixed) x  at (variable) θ . 

[NB: The use of the term ‘likelihood’ as distinct from ‘density’ is, by some authors, 

confined to (2), however we use it as both a function of x  and a function of θ , made 

explicit in the discussion]. 

 

Likelihood ratio (LR): The likelihood ratio statistic is generally denoted ' 'Y  in this 

work.  ( ) ( )
1 2 ( ) ( )( ) ( ; , ) H H

K K

g X f Y
g X f YY LR X LR X θ θ= = = = , where g  is the probability or 

density of X  calculated under the two simple hypotheses H 1( )θ θ= and K 2( )θ θ= , 

and f  is the probability or density of Y .  For the likelihood ratio value, substitute x  

for X . 

 

LP: Likelihood Principle. 

 

LL: Law of Likelihood. 
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QLL: Quantitative Law of Likelihood. 

 

Minimum sufficient statistic (MSS): A sufficient statistic that is a function of each 

and every other sufficient statistic. 

 

MLE: Maximum likelihood estimator (random variable) or estimate (observed value). 

 

Neyman-Pearson optimal test (Best test): A test based on the BCR. 

 

Parameter space: Set containing all values under consideration for the parameter of 

interest.  Denoted (in general) Θ . 

 

Power: (Reject H)KP .  Denoted κ . 

 

p-value:  For the purposes of this work, best thought of as 0( )HP Y y≤  where Y  is the 

likelihood ratio statistic and 0y  is its observed value.  The p-value is the smallest 

significance level value at which H is rejected (by a NP optimal test) given this data. 

 

Rejection region: Set of values of a test statistic (often a sufficient statistic) for which 

H is rejected at the α  level. 

 

Scenario: Let M , be a model connecting a natural statistic, X , with a parameter of 

interest, θ , via some probability density ( ; )f x θM .  A scenario, ( , , )H K≡S M , is a 

combination of the model with two distinct, ordered hypotheses each specifying the 

value of θ . 

 

Significance level: (Reject H)HP .  Denoted α . 

 

Simple hypothesis: A hypothesis that completely defines the distribution of the test 

statistic, for example (in the absence of nuisance parameters), by assigning a single 

specific value to the parameter of interest, θ . 
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SP: Sufficiency Principle. 

 

Sufficient statistic: A statistic, ( )s X , is sufficient for θ ∈Θ  if and only if 

( ; ) ( ( ); ) ( ),  ,  .L x g s x h x xθ θ θ= ⋅ ∀ ∀ ∈Θ  

 

Support: The support of the random variable, X , (having a specified distribution) is 

the set of all values, x , such that the probability or density of X  at x  is non-zero. 

 

Type I error: Rejecting H when H is true. The probability of this event is the 

significance level of the test. 

 

Type II error: Accepting H when K is true.  The probability of this event (denoted 

β ) equals one minus the power of the test (i.e. 1β κ= − ). 

 

Y: Denotes the likelihood ratio statistic throughout most of this work. 

 

 and φ Φ : Pdf and cdf of a standard Normal (i.e. Gaussian) variable: 
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