ABSTRACT

Within mathematical statistics, there are important differences of opinion about which
features of data encapsulate the evidence for or against a hypothesis. At present the
dominant school of thought in statistical inference is ‘frequentist’ theory, which
utilises concepts such as the p-value of the data or the result of a test with given error
probabilities. Unlike most non-frequentist methods, this approach is in breach of the
likelihood principle.

In 1958 Cox published a seminal paper in which he supported Fisher’s view that
frequentist inferences made conditional upon the value of an ancillary statistic
produce results that are more relevant to the question at issue (eg. hypotheses) and,
therefore, evidentially superior. So compelling was his argument that, within a few
years, this view had gained wide acceptance, at least in principle. Inferences carried
out according to Cox’s method are no more consistent with likelihood theory than
other versions of frequentism, even though Birnbaum (1962) showed that certain of
Cox’s tenets are closely allied to the likelihood principle. In many common cases, no
exact ancillary statistic exists on the conventional parameter space, and the
conventional, unconditional inference remains unchallenged. Attempts to extend the
theory of conditioning by the use of approximately ancillary statistics are complicated
by the need to weigh the gain in relevance against the loss of information occasioned
by the lack of strict ancillarity.

In this thesis, | identify a type of statistic that is exactly ancillary, in Cox’s sense, on
binary parameter spaces. Such statistics exist even in cases where there are no exact
ancillaries on the conventional parameter space. Adopting Cox’s approach, | argue
that inferences made, conditional on the value of these statistics, are evidentially
superior. Conditioning upon these statistics is exhaustive and takes the pursuit of
relevance, via conditioning, as far as it can be taken within the frequentist framework.

Exhaustive conditioning allows us to criticise standard frequentist inference in terms
of the concepts that define that theory, rather than by reference to concepts imported
from alternative systems. We see, for instance, that the standard p-value is the
average of a number of conditional probabilities, only one of which is actually
relevant to the question at issue. Thus, the conventional p-value and error probabilities
of a test do not measure anything useful from the evidential point of view, and should
be replaced by their conditional counterparts, which are the measures that are most
relevant.

Exhaustive conditional inference produces results that are more consistent with the
likelihood principle than those from either unconditional or existing conditional
methods. In particular, it is not possible to get a result that is statistically significant
against a hypothesis, H, from data where the likelihood under H is greater than the
likelihood under the alternative hypothesis. The properties of exhaustive conditional
inference show that it is possible to approximate likelihood results while remaining
formally frequentist.
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Glossary of technical terms and abbreviations.

Ancillary statistic: A statistic having (as a minimum requirement) a distribution that

is independent of the parameter of interest in the specified parameter space.

Ancillary event: An event having a probability that is independent of the value of the

parameter of interest in the specified parameter space.

Best critical region (BCR): The rejection region with highest power for a given

significance level (&), given (in the absence of randomisation) by {x:y = LR(X) <c}

where P, (Y <¢)=«.

Binary parameter space (BPS): A parameter space containing exactly two distinct

values. Denoted (in general) ;.

CLR: Critical likelihood ratio.
Conditional confidence interval (CCI): Unless otherwise specified, this interval is
based on ECI, i.e. on tests of simple hypotheses (covering all values of the

conventional parameter space) conditional on the observed value of the DDF statistic.

Confidence interval (Cl): Two-sided optimal (NP) confidence interval, i.e.

‘uniformly most accurate unbiased’ of specified coverage.

Critical region: See rejection region.

cp-value: p-value conditional on the observed value of the DDF statistic, D(Y). The

function cp(-) operates on the likelihood ratio value.

CP: Conditional Principle (assumed ‘unrestricted” unless specified as ‘restricted’).



DDF statistic: The “difference of the distribution functions’ statistic. This statistic is

an EAS whenever Y is continuous. Denoted D(-) as a function of Y .

Exhaustive ancillary statistic (EAS): An ancillary statistic that partitions the
support of the likelihood ratio statistic into pairs of values, except for LR=1, which

comprises an entire sub-set.

H: (Simple) null hypothesis (often given in this work as 6 =4,).

K: (Simple) alternative hypothesis (often given as 8 =6,).

LI: Likelihood interval.

Likelihood: Denoted L(x;6).

(1) As a function of x: the probability or density of random x for a given (fixed)
value of 4.

(2) As a function of &: the probability or density of (fixed) x at (variable) &.

[NB: The use of the term “likelihood’ as distinct from “density’ is, by some authors,
confined to (2), however we use it as both a function of x and a function of &, made

explicit in the discussion].

Likelihood ratio (LR): The likelihood ratio statistic is generally denoted 'Y ' in this
work. Y =LR(X)=LR(X;0,,6,) =22 - 1) ‘where g is the probability or

gk (X) T fk(Y)?

density of X calculated under the two simple hypotheses H (6 =6,)and K (8 =6,),
and f is the probability or density of Y . For the likelihood ratio value, substitute x

for X.

LP: Likelihood Principle.

LL: Law of Likelihood.



QLL: Quantitative Law of Likelihood.

Minimum sufficient statistic (MSS): A sufficient statistic that is a function of each

and every other sufficient statistic.

MLE: Maximum likelihood estimator (random variable) or estimate (observed value).

Neyman-Pearson optimal test (Best test): A test based on the BCR.

Parameter space: Set containing all values under consideration for the parameter of

interest. Denoted (in general) © .

Power: P, (Reject H). Denoted « .

p-value: For the purposes of this work, best thought of as P, (Y <y,) where Y is the
likelihood ratio statistic and vy, is its observed value. The p-value is the smallest

significance level value at which H is rejected (by a NP optimal test) given this data.

Rejection region: Set of values of a test statistic (often a sufficient statistic) for which

H is rejected at the « level.

Scenario: Let M, be a model connecting a natural statistic, X , with a parameter of
interest, @, via some probability density f, (x;8). A scenario, S=(M,H,K),isa

combination of the model with two distinct, ordered hypotheses each specifying the

value of 4.

Significance level: P, (Reject H). Denoted « .

Simple hypothesis: A hypothesis that completely defines the distribution of the test
statistic, for example (in the absence of nuisance parameters), by assigning a single

specific value to the parameter of interest, 6.

Vi



SP: Sufficiency Principle.

Sufficient statistic: A statistic, s(X), is sufficient for 8 € ® if and only if
L(x;0) = 9(s(x);0)-h(x), Vx, VO €O.

Support: The support of the random variable, X , (having a specified distribution) is

the set of all values, x, such that the probability or density of X at x is non-zero.

Type | error: Rejecting H when H is true. The probability of this event is the

significance level of the test.

Type Il error: Accepting H when K is true. The probability of this event (denoted

) equals one minus the power of the test (i.e. f=1—«).

Y: Denotes the likelihood ratio statistic throughout most of this work.

¢ and @ : Pdf and cdf of a standard Normal (i.e. Gaussian) variable:
(1) = exp{-3 7}, 2R

D(z) = exp{-it°}dt, ze R.
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