Chapter 1: Introduction & overview.

1.1 Introduction.

Within mathematical statistics, there are many conflicting views about what
constitutes information and how to extract it from data. Different approaches, applied
to the same data, may produce radically different interpretations, so identifying good
methods is very important for the advancement of the social sciences, medicine,

economics and other areas.

The existing theories can be classified into two general groups. The first, which we
will call “frequentist’’, is derived principally from the theories of Fisher and of
Neyman and Pearson. While different philosophically and (to some extent) in
presentation, these methods are similar in some important respects, notably, that they
are in breach of the likelihood principle. This is because the densities of outcomes not
actually observed influence the results, for example, via the tail area probabilities that
define the p-value or significance level. In this work, we will contrast frequentist
inference with a form of inference consistent with the likelihood principle. The best
known such theory is Bayesianism (in its various forms), which is usually seen as the
main rival to frequentist inference. However, one may adhere to the likelihood
principle without necessarily using prior probabilities, and we will contrast frequentist
inference with a non-Bayesian approach in which the likelihood ratio of the observed

data is interpreted as a measure of the evidence for one hypothesis relative to another.

When and whether to condition upon an observed feature of the data is a point of
contention within frequentist inference, closely related to the issue of finding an
appropriate reference set. Fisher advocated conditioning on ancillary statistics; this
(and his related rejection of power) was one of the main points where his theory
differed from that of Neyman and Pearson. Welch (1939) discussed the issue, as it

applied to a particular case, and argued that Neyman and Pearson were correct in not

! “Frequentist inference’ is equivalent to ‘sampling theory inference’ —a more correct term that is not as
widely used. It does not imply any particular view about the nature of probabilities.



conditioning on ancillary statistics. However, in 1958, Cox used a different example
to argue that conditional inferences are superior — because more relevant — and that
Neyman-Pearson inference should be modified to take this into account. His
argument, although not fundamentally different from that of Fisher, was much better
received so that within a few years it had been widely accepted (at least in theory) that

inferences should be carried out conditional on ancillary statistics.

Conditional frequentist inferences are no more consistent with likelihood theory than
unconditional inferences. However, in 1962, Birnbaum showed that an unrestricted
conditional principle (not advocated by Cox but consistent with his core argument) in
combination with the sufficiency principle is equivalent to the likelihood principle.
This means that two principles, well regarded by supporters of classical theory, imply
a third principle, completely at odds with it. Despite the standing of the two
component principles, Birnbaum’s theorem did not lead to a widespread conversion
from frequentist inference to likelihood-based inference. The fact that, in the type of
examples used by Cox, conditioning does not produce inferences that are closer to
likelihood inferences may help explain why Birnbaum’s theorem was not more
influential among frequentist statisticians. Some have criticised Birnbaum for basing
his conditional principle on an ancillary statistic that is not part of the minimal

sufficient statistic for the parameter of interest.

Traditionally, ancillary statistics have been defined with respect to a conventional
parameter space, such as the set of real numbers, and this has meant that in many
common cases no exact ancillary statistic exists.? On the other hand, the argument for
conditioning on a statistic that is very nearly ancillary is almost as compelling as the
argument for conditioning on ancillary statistics. In such a case it is necessary to
ascertain that the extra information gained by conditioning outweighs that which has
been lost because of the lack of strict ancillarity. Information can be conceived of in

many different ways so this is not necessarily straightforward.

This debate has been fuelled by several enlightening cases used as counter-examples

to various inferential theories — the type of process described by Lakatos, in Proofs

2 The “range of application [of exact ancillaries] is rather limited, exact ancillaries being rather a rarity
in applications”. Lloyd, p. 2.



and refutations®, for mathematics generally. In this thesis we aim to push the debate
further by advancing some novel counter-examples that apply to cases previously
thought exempt from criticism on a conditional basis. We will consider parameter
spaces containing two elements of the conventional parameter space (consistent with
tests of two simple hypotheses) and find that we are often able to identify an exact
ancillary statistic possessing certain optimal properties. Since these exhaustive
ancillary statistics are part of the minimal sufficient statistic, they meet the most
stringent requirements that have been proposed for valid conditioning and, since they
are continuous, conditioning on them is highly informative. If we accept that the
arguments of Cox and others still apply when the parameter space is reduced in size,
then it follows that we can improve (frequentist) hypothesis tests by conditioning on
these statistics and using the conditional error rates. Conditioning on this type of
ancillary statistic produces results that are very different from those of standard
inference and, although not strictly in accordance with the likelihood principle, are
much more consistent with it than either unconditional or existing conditional
methods. In particular it is no longer possible to get a statistically significant result
against a hypothesis, H, from data where the likelihood under H is greater than the
likelihood under the alternative hypothesis. (This is a common failing of traditional
tests with high power.) There is a widespread perception that classical inference is
more informative than likelihood inference because, for instance, standard confidence
intervals are generally narrower than standard likelihood intervals. However, we will
show that standard measures are averages of components, most of which are
associated with unobserved values of the ancillary statistic and therefore (arguably)
irrelevant. It is this undesirable feature that produces the apparently superior
performance; for instance, the standard p-value is the average of a number of
conditional probabilities only one of which is actually relevant, the averaging process

tending to create a smaller, more ‘significant’ p-value.

% |akatos.



1.2 Terminology & general approach.

Statistical terminology is often arbitrary or inconsistent and, to further complicate
matters, certain terms have come to be strongly identified with particular philosophies
or points of view. In this work we have tried to use those terms that will (regardless
of their origins or associations) help the reader to understand what is being said by

reference to familiar concepts. For example, the quantity P, (X < x) is familiar as the

left-sided ‘p-value of x’, and will be referred to by this name in every context
involving left-sided hypothesis tests, including those where a fixed significance level
has been specified. The reader may interpret the term ‘p-value of x’ in a purely

mathematical sense, free of its Fisherian baggage.

We use the term ‘evidence’ quite frequently and intend it to be understood in a
general, layman’s sense; more particular versions (e.g. likelihood ratio) are always
specified. We do assume that most investigators in the sciences and social sciences
(as well as many other areas) are frequently interested in obtaining from their data
something that can reasonably be described as evidence. It follows from this that any
mode of inference that cannot be interpreted as providing evidence (in the broad
sense) is of limited use. Although the theory of Neyman and Pearson has sometimes
been described (particularly by Neyman) as pure quality control with no evidential
interpretation intended, it is quite clear that this form of inference is almost invariably
interpreted evidentially by those applying it to (for example) experimental data. Cox
(1958) distinguished between finding out ‘what the data tells us’ and using rules to

secure predetermined success rates; this work is about discovering the former.

We join Kendall & Stuart in making the following disclaimer (with an evidential

flavour) regarding some particularly unpleasant terminology*:

It is necessary to make it clear at the outset that the rather peremptory terms
“reject” and *“accept”, used of a hypothesis under test, ... are now conventional
usage, to which we shall adhere, and are not intended to imply that any

hypothesis is ever finally accepted or rejected in science. If the reader cannot

* Kendall & Stuart (1964), Vol. 2, p. 163.



overcome his philosophical dislike of these admittedly inappropriate expressions,
he will perhaps agree to regard them as code words, “reject” standing for

“decide that the observations are unfavourable to”” and “accept” for the opposite.

We have defined the likelihood ratio statistic as is standard in statements of the
Neyman-Pearson theorem. That is, for a test of two simple hypotheses H (the null
hypothesis) and K (the alternative hypothesis) with data, x, the likelihood ratio of x,
written LR(x), is given by
LR() =25
fi (x)
where f,(-)and f, (-)are the density functions of X under H and K respectively. In

some works, for instance Royall, likelihood ratio is defined as the reciprocal of this

expression.

1.3 Who will this interest?

The bulk of this work concerns various forms of conditional inference. This places it
firmly within the realm of frequentist inference. A likelihoodist need not consider this
issue since, as Birnbaum showed, the likelihood principle implies the strongest
conditional principle. Also, methods consistent with the likelihood principle do not
make inferences dependent on any values in the sample space other than the one
observed. For these reasons, this work will be of most interest to practitioners of
frequentist inference, particularly those who have been impressed by the arguments in
favour of conditioning, but it also throws some light on the differences and

similarities between the conflicting schools of thought (see §11.7).

1.4 Why look at tests of two simple hypotheses.

In this work we concentrate on comparisons of simple hypotheses. We do this partly
because, in such cases, it is easier to judge whether the result given by an inference

procedure accurately describes the available evidence, and because it is not clear to us



that those who test composite hypotheses have a clear idea of what question(s) they
are seeking to answer. Also we have no reason to believe that any method that
delivers flawed results for simple hypotheses is likely to be any more successful in
dealing with complex situations, although the complexity of the scenario may hide the
flaws. In the case of Neyman-Pearson inference, the theorem on which it is based®
applies to tests of two simple hypotheses in the first instance, and the theory for
testing composite hypotheses is an extension of the method used in the simple case. It
is only possible to calculate the significance level and power of a test when both
hypotheses are simple. Looking at simple hypotheses is not as restrictive as it may
appear since interval estimation (for example, confidence intervals) can be equated to
the results of tests on pairs of simple hypotheses as long as we can test all such pairs

defined by a natural parameter space.

The examples we consider are free of nuisance parameters. This reduces the
generality, but follows the long tradition of avoiding discussion of a situation that

creates problems for almost all statistical theories.

1.5 Overview

This work falls into two halves. Chapters 2 to 6 contain discussions of some
evidential flaws in the analyses of data produced by orthodox frequentist inference,
and detail the conditioning debate from 1939 to the present, including the most
illuminating examples and the main points of theoretical contention. Although there
is reason to believe that conditioning might hold the key to improving frequentist
inferences, to date it has not done so. In Chapter 7 we consider, as a contrast, the non-
frequentist likelihood approach advocated by Royall. In Chapters 8 to 10, we show
how to find exact ancillary statistics for binary parameter spaces in a reasonably wide
range of cases. This extends the impact of (frequentist) conditional theory to cases
where it was not previously applicable and produces very different results. We

consider the results of such conditioning, and discuss the implications — theoretical

® The “Neyman-Pearson theorem”, see, for example, Stuart et al (1999)



and practical — of accepting this approach, placing it in the context of the wider

debate. A brief outline of the contents of each chapter is given below.

Chapter 2.

This chapter is largely descriptive, laying the groundwork of concepts and definitions
central to the development of this work. In it we describe frequentist inference,
particularly the “optimal’ theory of Neyman and Pearson, who developed a test
procedure satisfying their own criteria of good performance. We contrast the formal
properties of this approach with the informal intuitive properties that are frequently
attributed to it. We describe the concepts of sufficiency and ancillarity and the two

related inferential principles of likelihood and sufficiency.

Chapter 3.

In Chapter 3 we establish that optimal Neyman-Pearson inferences have severe
defects when it comes to assessing and describing the evidential content of data, even
in straightforward cases. These flaws are so intuitively apparent that they can be

discussed without recourse to any specific, alternative notion of ‘evidence’.

In particular, we discuss:
a) Bias between the hypotheses and the implications of trying to control it;
b) Lack of sensitivity of the test procedure to the alternative hypothesis;
c) The problem of weak evidence;
d) The way in which tests of simple hypotheses are generalised to tests of

composite hypotheses — why this is possible and whether it is reasonable.

Chapter 4.

In Chapter 4, we describe the historical evolution of the conditional debate via three
seminal works on the topic:
a) Welch (1939), where the ‘optimal’ theory of Neyman & Pearson and the

conditional theory of Fisher where critically compared;



b) Cox (1958), where the ‘relevance argument’ for conditioning was developed;
c) Birnbaum (1962), where a theorem linking the conditional principle to the

likelihood principle was proved.

We highlight the responses of a number of eminent statisticians to these papers, but
critical analyses of these and other arguments are postponed until Chapter 5. We
describe the examples used by Welch and Cox in great detail in order to facilitate

further development of them in later chapters.

Chapter 5.

Chapter 5 introduces the ‘gambling scenario’ test for the reasonableness of an
inference (Buehler (1959)), which can be used as an argument for conditioning,
distinct from the ‘relevance’ argument of Cox. The examples raised in Chapter 4 are

subjected to this test via simulations.

We illuminate Birnbaum’s theorem by analysing the proof and thereby show that the
unrestricted conditional principle does indeed rule out the use of frequentist methods.
By contrast the restricted conditional principle can be adhered to within a frequentist
framework but the restriction itself causes some coherence problems. We show that
the unrestricted conditional principle is not inherently inconsistent with the

sufficiency principle — a claim often made to justify preference for the restricted CP.

We note that the wider community of statistics users is not aware of these important
controversies, even though they are of great practical significance, are not difficult to

understand, and have been current for more than thirty years.

Chapter 6.

We establish that Welch’s example, which has played a critical role on both sides of
the debate and is still regarded as the paradigmatic case for conditioning®, has been
misunderstood, and that neither of the standard competing methods produces sensible
inferences. We show that the example will still justify conditional inference if the

usual ancillary statistic is replaced with another, defined on a binary parameter space.

¢ Keifer, p. 105.



Chapter 7.

The concept of ‘evidence’ is formalised through Royall’s Quantitative Law of
Likelihood’. We compare the results obtained by this method with those from
conventional frequentism for a number of simple cases, noting that the likelihood
interpretations are more consistent with our intuitions about the meaning of the data.
Using this interpretation, we show formally that having a conventional p-value that is
small is a necessary but not sufficient condition for the data to strongly favour the
alternative hypothesis; this result is consistent with the cases we have observed in
Chapter 3 where the p-value is low and yet the data does not appear to justify

rejecting H.

Chapter 8.

In Chapter 8, we consider cases with certain symmetry properties and identify a type
of statistic that is ancillary on binary parameter spaces in all such cases, including the
Normal location model. We describe the effect of conditioning upon the ancillary
statistic and the practical and theoretical differences between these results and those
derived from conventional inference. These include the fact that the conditional p-
value is always greater than the conventional p-value, and that the conditional p-value
is consistent with the likelihood interpretation described in Chapter 7. We show why
it is reasonable to take the view that the conventional measures are not relevant to
evidential questions. Birnbaum’s Binomial example and Welch’s Uniform example

are instances of the cases discussed here.

Chapter 9.

In Chapter 9 we prove that, in many cases that lack the symmetry of those discussed
in Chapter 8, it is nevertheless possible to find a similar ancillary statistic. Some
general implications of conditioning on such exhaustive ancillary statistics are
derived and the statistics are shown to possess a number of optimal properties. We
show that, with exhaustive conditional inference, the model-dependent interpretations

of a given likelihood ratio tend to converge, in contrast to conventional inference.

"Royall, p. 3.



This approach constitutes a major extension of conditional inference within the

frequentist framework.

Chapter 10.

We use the approach outlined in Chapter 9 to find conditional inferences for a range
of different models and these are compared with conventional and likelihood results.
We find that the conditional results are frequently superior to the conventional results
when it comes to describing the balance of evidence between the hypotheses, and that
they are usually in reasonable agreement with the likelihood results. We show under
what circumstances this technique gives intuitively unsatisfactory results, and
conjecture that larger samples may overcome this problem. Among the examples
considered is a new model (the ‘gradient model”) devised to highlight the difference

between conditional and unconditional results more effectively than Welch’s model.

Chapter 11.

In Chapter 11, we summarise the main points and analyse their relevance and
implications for the wider debate. We note that, since our approach tends to produce
likelihood-type results while still being formally frequentist, it shows that the
frequentist/non-frequentist divide does not constitute the most important practical

distinction between competing approaches.
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