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Chapter 1: Introduction & overview. 
 

1.1 Introduction. 

 

Within mathematical statistics, there are many conflicting views about what 

constitutes information and how to extract it from data.  Different approaches, applied 

to the same data, may produce radically different interpretations, so identifying good 

methods is very important for the advancement of the social sciences, medicine, 

economics and other areas.  

 

The existing theories can be classified into two general groups.  The first, which we 

will call ‘frequentist1’, is derived principally from the theories of Fisher and of 

Neyman and Pearson.  While different philosophically and (to some extent) in 

presentation, these methods are similar in some important respects, notably, that they 

are in breach of the likelihood principle.  This is because the densities of outcomes not 

actually observed influence the results, for example, via the tail area probabilities that 

define the p-value or significance level.  In this work, we will contrast frequentist 

inference with a form of inference consistent with the likelihood principle.  The best 

known such theory is Bayesianism (in its various forms), which is usually seen as the 

main rival to frequentist inference.  However, one may adhere to the likelihood 

principle without necessarily using prior probabilities, and we will contrast frequentist 

inference with a non-Bayesian approach in which the likelihood ratio of the observed 

data is interpreted as a measure of the evidence for one hypothesis relative to another. 

 

When and whether to condition upon an observed feature of the data is a point of 

contention within frequentist inference, closely related to the issue of finding an 

appropriate reference set.  Fisher advocated conditioning on ancillary statistics; this 

(and his related rejection of power) was one of the main points where his theory 

differed from that of Neyman and Pearson.  Welch (1939) discussed the issue, as it 

applied to a particular case, and argued that Neyman and Pearson were correct in not 

                                                 
1 ‘Frequentist inference’ is equivalent to ‘sampling theory inference’ – a more correct term that is not as 
widely used.  It does not imply any particular view about the nature of probabilities. 
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conditioning on ancillary statistics.  However, in 1958, Cox used a different example 

to argue that conditional inferences are superior – because more relevant – and that 

Neyman-Pearson inference should be modified to take this into account.  His 

argument, although not fundamentally different from that of Fisher, was much better 

received so that within a few years it had been widely accepted (at least in theory) that 

inferences should be carried out conditional on ancillary statistics.  

 

Conditional frequentist inferences are no more consistent with likelihood theory than 

unconditional inferences.  However, in 1962, Birnbaum showed that an unrestricted 

conditional principle (not advocated by Cox but consistent with his core argument) in 

combination with the sufficiency principle is equivalent to the likelihood principle.  

This means that two principles, well regarded by supporters of classical theory, imply 

a third principle, completely at odds with it.  Despite the standing of the two 

component principles, Birnbaum’s theorem did not lead to a widespread conversion 

from frequentist inference to likelihood-based inference.  The fact that, in the type of 

examples used by Cox, conditioning does not produce inferences that are closer to 

likelihood inferences may help explain why Birnbaum’s theorem was not more 

influential among frequentist statisticians.  Some have criticised Birnbaum for basing 

his conditional principle on an ancillary statistic that is not part of the minimal 

sufficient statistic for the parameter of interest.   

 

Traditionally, ancillary statistics have been defined with respect to a conventional 

parameter space, such as the set of real numbers, and this has meant that in many 

common cases no exact ancillary statistic exists.2 On the other hand, the argument for 

conditioning on a statistic that is very nearly ancillary is almost as compelling as the 

argument for conditioning on ancillary statistics.  In such a case it is necessary to 

ascertain that the extra information gained by conditioning outweighs that which has 

been lost because of the lack of strict ancillarity.  Information can be conceived of in 

many different ways so this is not necessarily straightforward. 

 

This debate has been fuelled by several enlightening cases used as counter-examples 

to various inferential theories – the type of process described by Lakatos, in Proofs 

                                                 
2 The “range of application [of exact ancillaries] is rather limited, exact ancillaries being rather a rarity 
in applications”.  Lloyd, p. 2. 



 Chapter 1: Introduction & overview. 
 

 3

and refutations3, for mathematics generally.  In this thesis we aim to push the debate 

further by advancing some novel counter-examples that apply to cases previously 

thought exempt from criticism on a conditional basis.  We will consider parameter 

spaces containing two elements of the conventional parameter space (consistent with 

tests of two simple hypotheses) and find that we are often able to identify an exact 

ancillary statistic possessing certain optimal properties. Since these exhaustive 

ancillary statistics are part of the minimal sufficient statistic, they meet the most 

stringent requirements that have been proposed for valid conditioning and, since they 

are continuous, conditioning on them is highly informative.  If we accept that the 

arguments of Cox and others still apply when the parameter space is reduced in size, 

then it follows that we can improve (frequentist) hypothesis tests by conditioning on 

these statistics and using the conditional error rates.  Conditioning on this type of 

ancillary statistic produces results that are very different from those of standard 

inference and, although not strictly in accordance with the likelihood principle, are 

much more consistent with it than either unconditional or existing conditional 

methods.  In particular it is no longer possible to get a statistically significant result 

against a hypothesis, H, from data where the likelihood under H is greater than the 

likelihood under the alternative hypothesis.  (This is a common failing of traditional 

tests with high power.)  There is a widespread perception that classical inference is 

more informative than likelihood inference because, for instance, standard confidence 

intervals are generally narrower than standard likelihood intervals.  However, we will 

show that standard measures are averages of components, most of which are 

associated with unobserved values of the ancillary statistic and therefore (arguably) 

irrelevant.  It is this undesirable feature that produces the apparently superior 

performance; for instance, the standard p-value is the average of a number of 

conditional probabilities only one of which is actually relevant, the averaging process 

tending to create a smaller, more ‘significant’ p-value.   

 

 

 

                                                 
3 Lakatos. 
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1.2 Terminology & general approach. 

 

Statistical terminology is often arbitrary or inconsistent and, to further complicate 

matters, certain terms have come to be strongly identified with particular philosophies 

or points of view.  In this work we have tried to use those terms that will (regardless 

of their origins or associations) help the reader to understand what is being said by 

reference to familiar concepts.  For example, the quantity P ( )H X x≤ is familiar as the 

left-sided ‘p-value of x ’, and will be referred to by this name in every context 

involving left-sided hypothesis tests, including those where a fixed significance level 

has been specified.  The reader may interpret the term ‘p-value of x ’ in a purely 

mathematical sense, free of its Fisherian baggage. 

  

We use the term ‘evidence’ quite frequently and intend it to be understood in a 

general, layman’s sense; more particular versions (e.g. likelihood ratio) are always 

specified.  We do assume that most investigators in the sciences and social sciences 

(as well as many other areas) are frequently interested in obtaining from their data 

something that can reasonably be described as evidence. It follows from this that any 

mode of inference that cannot be interpreted as providing evidence (in the broad 

sense) is of limited use.  Although the theory of Neyman and Pearson has sometimes 

been described (particularly by Neyman) as pure quality control with no evidential 

interpretation intended, it is quite clear that this form of inference is almost invariably 

interpreted evidentially by those applying it to (for example) experimental data.  Cox 

(1958) distinguished between finding out ‘what the data tells us’ and using rules to 

secure predetermined success rates; this work is about discovering the former. 

 

We join Kendall & Stuart in making the following disclaimer (with an evidential 

flavour) regarding some particularly unpleasant terminology4: 

 

It is necessary to make it clear at the outset that the rather peremptory terms 

“reject” and “accept”, used of a hypothesis under test, … are now conventional 

usage, to which we shall adhere, and are not intended to imply that any 

hypothesis is ever finally accepted or rejected in science.  If the reader cannot 
                                                 
4 Kendall & Stuart (1964), Vol. 2, p. 163. 
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overcome his philosophical dislike of these admittedly inappropriate expressions, 

he will perhaps agree to regard them as code words, “reject” standing for 

“decide that the observations are unfavourable to” and “accept” for the opposite. 

 

We have defined the likelihood ratio statistic as is standard in statements of the 

Neyman-Pearson theorem.  That is, for a test of two simple hypotheses H (the null 

hypothesis) and K (the alternative hypothesis) with data, x , the likelihood ratio of x , 

written ( )LR x , is given by 

 ( )( )
( )

H

K

f xLR x
f x

= , 

where ( )Hf ⋅ and ( )Kf ⋅ are the density functions of X  under H and K respectively.  In 

some works, for instance Royall, likelihood ratio is defined as the reciprocal of this 

expression. 

 

1.3 Who will this interest?  

  

The bulk of this work concerns various forms of conditional inference.  This places it 

firmly within the realm of frequentist inference.  A likelihoodist need not consider this 

issue since, as Birnbaum showed, the likelihood principle implies the strongest 

conditional principle.  Also, methods consistent with the likelihood principle do not 

make inferences dependent on any values in the sample space other than the one 

observed.  For these reasons, this work will be of most interest to practitioners of 

frequentist inference, particularly those who have been impressed by the arguments in 

favour of conditioning, but it also throws some light on the differences and 

similarities between the conflicting schools of thought (see §11.7). 

 

1.4 Why look at tests of two simple hypotheses. 

 

In this work we concentrate on comparisons of simple hypotheses.  We do this partly 

because, in such cases, it is easier to judge whether the result given by an inference 

procedure accurately describes the available evidence, and because it is not clear to us 
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that those who test composite hypotheses have a clear idea of what question(s) they 

are seeking to answer.  Also we have no reason to believe that any method that 

delivers flawed results for simple hypotheses is likely to be any more successful in 

dealing with complex situations, although the complexity of the scenario may hide the 

flaws. In the case of Neyman-Pearson inference, the theorem on which it is based5 

applies to tests of two simple hypotheses in the first instance, and the theory for 

testing composite hypotheses is an extension of the method used in the simple case. It 

is only possible to calculate the significance level and power of a test when both 

hypotheses are simple.  Looking at simple hypotheses is not as restrictive as it may 

appear since interval estimation (for example, confidence intervals) can be equated to 

the results of tests on pairs of simple hypotheses as long as we can test all such pairs 

defined by a natural parameter space. 

 

The examples we consider are free of nuisance parameters.  This reduces the 

generality, but follows the long tradition of avoiding discussion of a situation that 

creates problems for almost all statistical theories.  

 

1.5 Overview  

 

This work falls into two halves.  Chapters 2 to 6 contain discussions of some 

evidential flaws in the analyses of data produced by orthodox frequentist inference, 

and detail the conditioning debate from 1939 to the present, including the most 

illuminating examples and the main points of theoretical contention.  Although there 

is reason to believe that conditioning might hold the key to improving frequentist 

inferences, to date it has not done so.  In Chapter 7 we consider, as a contrast, the non-

frequentist likelihood approach advocated by Royall.  In Chapters 8 to 10, we show 

how to find exact ancillary statistics for binary parameter spaces in a reasonably wide 

range of cases.  This extends the impact of (frequentist) conditional theory to cases 

where it was not previously applicable and produces very different results.  We 

consider the results of such conditioning, and discuss the implications – theoretical 

                                                 
5 The “Neyman-Pearson theorem”, see, for example, Stuart et al (1999) 
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and practical – of accepting this approach, placing it in the context of the wider 

debate.  A brief outline of the contents of each chapter is given below. 

 

Chapter 2. 

This chapter is largely descriptive, laying the groundwork of concepts and definitions 

central to the development of this work.  In it we describe frequentist inference, 

particularly the ‘optimal’ theory of Neyman and Pearson, who developed a test 

procedure satisfying their own criteria of good performance. We contrast the formal 

properties of this approach with the informal intuitive properties that are frequently 

attributed to it. We describe the concepts of sufficiency and ancillarity and the two 

related inferential principles of likelihood and sufficiency. 

 

Chapter 3.  

 

In Chapter 3 we establish that optimal Neyman-Pearson inferences have severe 

defects when it comes to assessing and describing the evidential content of data, even 

in straightforward cases.  These flaws are so intuitively apparent that they can be 

discussed without recourse to any specific, alternative notion of ‘evidence’.  

 

In particular, we discuss: 

a) Bias between the hypotheses and the implications of trying to control it;  

b) Lack of sensitivity of the test procedure to the alternative hypothesis; 

c) The problem of weak evidence; 

d) The way in which tests of simple hypotheses are generalised to tests of 

composite hypotheses – why this is possible and whether it is reasonable. 

 

Chapter 4. 

In Chapter 4, we describe the historical evolution of the conditional debate via three 

seminal works on the topic: 

a) Welch (1939), where the ‘optimal’ theory of Neyman & Pearson and the 

conditional theory of Fisher where critically compared; 
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b) Cox (1958), where the ‘relevance argument’ for conditioning was developed;   

c) Birnbaum (1962), where a theorem linking the conditional principle to the 

likelihood principle was proved. 

 

We highlight the responses of a number of eminent statisticians to these papers, but 

critical analyses of these and other arguments are postponed until Chapter 5. We 

describe the examples used by Welch and Cox in great detail in order to facilitate 

further development of them in later chapters.   

Chapter 5. 

Chapter 5 introduces the ‘gambling scenario’ test for the reasonableness of an 

inference (Buehler (1959)), which can be used as an argument for conditioning, 

distinct from the ‘relevance’ argument of Cox. The examples raised in Chapter 4 are 

subjected to this test via simulations.   

 

We illuminate Birnbaum’s theorem by analysing the proof and thereby show that the 

unrestricted conditional principle does indeed rule out the use of frequentist methods.  

By contrast the restricted conditional principle can be adhered to within a frequentist 

framework but the restriction itself causes some coherence problems. We show that 

the unrestricted conditional principle is not inherently inconsistent with the 

sufficiency principle – a claim often made to justify preference for the restricted CP.  

 

We note that the wider community of statistics users is not aware of these important 

controversies, even though they are of great practical significance, are not difficult to 

understand, and have been current for more than thirty years.   

Chapter 6. 

We establish that Welch’s example, which has played a critical role on both sides of 

the debate and is still regarded as the paradigmatic case for conditioning6, has been 

misunderstood, and that neither of the standard competing methods produces sensible 

inferences.  We show that the example will still justify conditional inference if the 

usual ancillary statistic is replaced with another, defined on a binary parameter space.   

 
                                                 
6 Keifer, p. 105. 
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Chapter 7. 

The concept of ‘evidence’ is formalised through Royall’s Quantitative Law of 

Likelihood7.  We compare the results obtained by this method with those from 

conventional frequentism for a number of simple cases, noting that the likelihood 

interpretations are more consistent with our intuitions about the meaning of the data. 

Using this interpretation, we show formally that having a conventional p-value that is 

small is a necessary but not sufficient condition for the data to strongly favour the 

alternative hypothesis; this result is consistent with the cases we have observed in 

Chapter 3 where the p-value is low and yet the data does not appear to justify 

rejecting H. 

Chapter 8. 

In Chapter 8, we consider cases with certain symmetry properties and identify a type 

of statistic that is ancillary on binary parameter spaces in all such cases, including the 

Normal location model.  We describe the effect of conditioning upon the ancillary 

statistic and the practical and theoretical differences between these results and those 

derived from conventional inference.  These include the fact that the conditional p-

value is always greater than the conventional p-value, and that the conditional p-value 

is consistent with the likelihood interpretation described in Chapter 7.  We show why 

it is reasonable to take the view that the conventional measures are not relevant to 

evidential questions.  Birnbaum’s Binomial example and Welch’s Uniform example 

are instances of the cases discussed here. 

 

Chapter 9. 

In Chapter 9 we prove that, in many cases that lack the symmetry of those discussed 

in Chapter 8, it is nevertheless possible to find a similar ancillary statistic.  Some 

general implications of conditioning on such exhaustive ancillary statistics are 

derived and the statistics are shown to possess a number of optimal properties.  We 

show that, with exhaustive conditional inference, the model-dependent interpretations 

of a given likelihood ratio tend to converge, in contrast to conventional inference.  

                                                 
7 Royall, p. 3. 
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This approach constitutes a major extension of conditional inference within the 

frequentist framework. 

 

Chapter 10. 

We use the approach outlined in Chapter 9 to find conditional inferences for a range 

of different models and these are compared with conventional and likelihood results.  

We find that the conditional results are frequently superior to the conventional results 

when it comes to describing the balance of evidence between the hypotheses, and that 

they are usually in reasonable agreement with the likelihood results.  We show under 

what circumstances this technique gives intuitively unsatisfactory results, and 

conjecture that larger samples may overcome this problem.  Among the examples 

considered is a new model (the ‘gradient model’) devised to highlight the difference 

between conditional and unconditional results more effectively than Welch’s model.   

 

Chapter 11. 

In Chapter 11, we summarise the main points and analyse their relevance and 

implications for the wider debate.  We note that, since our approach tends to produce 

likelihood-type results while still being formally frequentist, it shows that the 

frequentist/non-frequentist divide does not constitute the most important practical 

distinction between competing approaches. 

 

 

 

 


